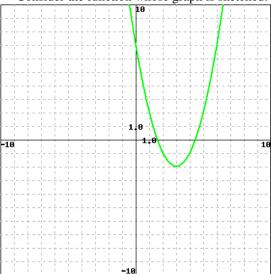
hw-16-properties-of-functions

Due: 12/13/2015 at 06:00am EST.

Students will be able to:


- Determine Increasing/Decreasing Intervals of Function
- Determine Local Maximum/Minimum Values of Function
- Identify Even and Odd Functions
- Determine Symmetry of Function

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

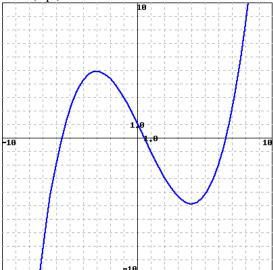
1. (1 pt)

Consider the function whose graph is sketched:

Find the open intervals over which the function is increasing or decreasing.

Write the answers in **interval notation**.

The open x-intervals over which the function is increasing:


The open x-intervals over which the function is decreasing:

Function has local maximum at *x* = ______

Function has local minimum at *x* = _____

Note: if there are no such points, enter *none*

2. (1 pt) Consider the function shown in the following graph.

Find open x-intervals where the function is decreasing:

Find open x-intervals where the function is increasing:

Note: use **interval notation** to enter your answer.

Function has local maximum at x =

Function has local minimum at x =

Note: if there are no such points, enter *none*

3. (1 pt)

Consider the function whose graph is sketched:

Find the open intervals over which the function is increasing or decreasing.

Write the answers in **interval notation**.

The open x-intervals over which the function is increasing:

The open x-intervals over which the function is decreasing:

4. (1 pt) Determine algebraically whether each functions is even, odd, or neither

? 1. Function
$$f(x) = -5x^3$$
 is ...

? 2. Function
$$f(x) = -5x^5$$
 is ...

? 3. Function
$$f(x) = 8x^4$$
 is ...

? 4. Function
$$f(x) = -3x^2 - 9$$
 is ...

For the following functions, enter E if they are even, O if they are odd, and N if they are neither even nor odd.

$$f(x) = x^2$$
 _____.

$$f(x) = x^{3}$$
.

$$f(x) = x^3 \underline{\hspace{1cm}}$$

$$f(x) = x^2 + x^3 \underline{\hspace{1cm}}$$

6. (1 pt)

Use E for Even and O for Odd and N for Neither Let

$$h = f \times g$$
,

i.e., h is the product of f and g. Then

h is ___ if f and g are both even,

h is ___ if f is even and g is odd, and

h is $\underline{\hspace{1cm}}$ if f and g are both odd.

7. (1 pt)

A function f is even if it satisfies f(x) = f(-x) for all x in its domain. An example of an even function is $f(x) = x^2$ since $(x^2) = (-x)^2$.

f is odd if it satisfies f(x) = -f(-x) for all x in its domain. An example of an odd function is $f(x) = x^3$ since $x^3 = -(-x)^3$.

Functions may be neither even nor odd, for example the function $f(x) = x^2 + x^3$ is in that category.

For each function below enter the letter E if the function is even, the letter **O** (not the digit 0!) if it's odd, and the letter **N** if it's neither even nor odd.

$$f(x) = x^4$$
.
 $f(x) = x^5$.

$$f(x) = x^4 + x^5$$
.

8. (1 pt) Below, enter x if the graph of the given equation is symmetric with respect to the x-axis, y if it is symmetric with respect to the y axis, o (lower case O) if it is symmetric with respect to the origin, and n (for None) if it has none of these three symmetries.

$$y = x^3 + x$$

 $y = (x^3 + 1)^2$

$$y = \frac{1}{1+x^2}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America