28 Graphs of Rational Functions.

Due: 12/14/2015 at 06:00am EST.

Students will be able to:

- Identify domain of rational functions
- Identify vertical asymptotes of rational functions
- Identify horizontal or slanted asymptotes of rational functions
- Identify any holes a graph of rational function might have
- Find the x-intercepts and y-intercepts of a graph of rational function
- Identify the graph of rational function
- Produce a possible formula for a rational function based on the given graph

Functions and symbols that WeBWorK understands.

Links to some useful WeBWorK pages for students

1. (1 pt) This is a warmup for the next problem.

For the following functions, use "x" to indicate that the x-axis is an asymptote, "h" to indicate a horizontal asymptote other than the x axis, "v" to indicate a vertical asymptote, "s" to indicate a slanted asymptote, and "n" the lack of an asymptote. If the graph of a function has several types of asymptotes indicate them all in alphabetical order.

For example, the function

$$f(x) = \frac{x^3}{x^2 - 1}$$

has a slanted asymptote since the degree of the numerator is one more than the degree of the denominator, and it also has two vertical asymptotes (at $x = \pm 1$). So you would enter "sv" (without the double quotation marks. The graph of

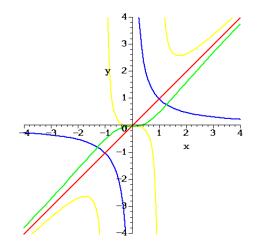
$$f(x) = \frac{1}{x}$$

has vertical asymptote (the y-axis) and the x-axis as an asymptote, so you would enter "vx". On the other hand, the graph of

$$f(x) = \frac{x^3}{x^2 + 1}$$

has only a slanted asymptote, so you would enter just "s".

 $f(x) = \frac{x^3}{x^2+1}$. To make this clear the following picture shows the graphs involved:



It may not be clear from the picture that the green graph (of $f(x) = \frac{x^3}{x^2+1}$ has a slanted asymptote, to make this clearer the Figure also contains the (red) graph of its asymptote defined by the equation y = x. The yellow graph is the graph of $f(x) = \frac{x^3}{x^2 - 1}$, the blue graph is the graph of $f(x) = \frac{1}{x}$.



2. (1 pt)

Match the graphs shown above with the functions listed below. Enter "r" for red, "g" for green, "p" for purple, "b" for blue, and "y" for yellow.

$$f(x) = \frac{1}{x}.$$

$$f(x) = \frac{1}{x^2 + 1}$$

Hint: Again, look for various kinds of asymptotes.

3. (1 pt) For the following functions, use "x" to indicate that the x-axis is an asymptote, "h" to indicate a horizontal asymptote other than the x axis, "v" to indicate a vertical asymptote, "s" to indicate a slanted asymptote, and "n" the lack of an asymptote. If the graph of a function has several types of asymptotes indicate them all in alphabetical order.

$$f(x) = \frac{x}{x-1}.$$

$$f(x) = \frac{x}{x^2-1}.$$

$$f(x) = \frac{x-1}{x^2+1}.$$

$$f(x) = \frac{x^4}{x^2+1}.$$

4. (1 pt) Let t be the time in weeks. At time t = 0, organic waste is dumped into a pond. The oxygen level in the pond at time t is given by

$$f(t) = \frac{t^2 - t + 1}{t^2 + 1}$$

Assume f(0) = 1 is the normal level of oxygen.

(a) On a separate piece of paper, graph this function.

(b) What will happen to the oxygen level in the lake as time goes on?

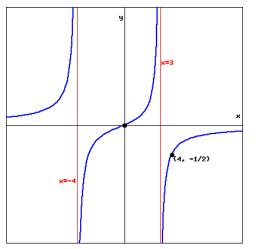
?

(c) Approximately how many weeks must pass before the oxygen level returns to 75% of its normal level?

_____ weeks (Round to at least two decimal places.)

5. (1 pt) Find a possible formula for the function graphed below. Assume the function has only one *x*-intercept at the origin, and the point marked on the graph below is located at $(4, \frac{-1}{2})$. The asymptotes are x = -4 and x = 3. Give your formula as a reduced rational function.

f(x) =_



(Click on graph to enlarge)

6. (1 pt) **More Graphing.** Know how to graph rational functions and to compute asymptotes and intercepts. For example the graph of

$$f(x) = \frac{2x - 1}{x - 1}$$

has a horizontal asymptote $y = ___$ and a vertical asymptote $x = ___$.

Its *y* intercept is $y = _$ and its *x* intercept is $x = _$. You should also draw the graph.

7. (1 pt) Perhaps the most central concept in all of mathematics is that of a <u>function</u>. You need to understand the concepts of <u>rule</u>, <u>domain</u>, and <u>range</u>, and what it means to <u>evaluate</u> a function at a number or an <u>algebraic expression</u> that may itself be defined by a function.

For this and the next two problems let

$$f(x) = \frac{x+1}{x^2 - 5x + 6}$$

Two numbers **not** in the domain of f are _____ and _____. (Enter the numbers in increasing size.)

8. (1 pt) Find the horizontal asymptote, if it exists, of the rational function below. If the function does not have a horizontal asymptote, enter *NONE*.

$$g(x) = \frac{(-9-x)(6+8x)}{8x^2+1}$$

The horizontal asymptote has equation _____

9. (1 pt) Let $r(x) = \frac{p(x)}{q(x)}$, where p and q are polynomials of degrees m and n respectively.

(a) If $r(x) \to 0$ as $x \to \infty$, then

- A. m = n
- B. *m* < *n*
- C. *m* > *n*
- D. None of the above

(b) If
$$r(x) \to k$$
 as $x \to \infty$, with $k \neq 0$, then

- A. m > n
- B. *m* = *n*
- C. *m* < *n*

2

• D. None of the above

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America