
WeBWorK PREP Webconference

Paul Pearson

Fort Lewis College

May 26, 2011

A. Preliminaries about Perl

1. Webwork is built from Perl

• advantages: scripted language, popular, fast,
etc.

• disadvantages: sometimes tricky syntax
(unavoidable?), restrictive data types

• specialization: Perl PG (Problem
Generation) MathObjects

2. Purpose of Webwork

• Deliver questions to students in two display
modes:

• HTML output

• PDF output

3. Data types in Perl

• # is the comment character

• ; ends a line of code

• Perl has scalars, which are strings or numbers.
Named scalars start with $.
$name = “Paul Pearson”;

$num = -5;

3. Data types in Perl

• Perl has arrays of scalars. Named arrays start
with @.
@birds = (“robins”,”blue jays”,”cardinals”);

@numbers = (-4, 3.14, 1000);

3. Data types in Perl

• To access a scalar inside an array, use
$birds[0];

$numbers[1];

Notice that we used $, not @, when accessing
a scalar inside an array. Also, the first entry of
any array has index 0, not 1, so $birds[0] has
the scalar value robins, while $numbers[1] has
the scalar value 3.14.

3. Data types in Perl

• You can get the index of the last element in an
array using one of these:
$#birds;

scalar(@birds);

both of which will return 2. Notice that the
number of elements in this array is 1 more
than the index of the last element.

3. Data types in Perl

• You can slice an array to create another array:
@basballteams = @birds[1..2];

will create an array @baseballteams with
elements “blue jays” and “cardinals”.

3. Data types in Perl

• Perl also has hashes (associative arrays of
scalars), which we won’t talk about right now.

4. Arithmetic in Perl

• Operations: +, -, *, /, ** (exponentiation), %
(modular arithmetic / remainder)

• Gotcha 1: Juxtaposition does not mean
multiply:
5 * 2; # correct

(5)(2); # incorrect

5 2; # incorrect

4. Arithmetic in Perl

• Gotcha 2: ^ is the shift operator, not
exponentiation
5**2; # correct exponentiation

5^2; # incorrect

4. Arithmetic in Perl

• Gotcha 3: -- (minus minus) is the decrement
operator, e.g., 5-- is the same as 4. Correct
way: use extra space or parentheses:
5 - -3; # correct, value is 8

5-(-3); # correct, value is 8

5--3; # incorrect

4. Arithmetic in Perl

• Gotcha 4: be careful with fractional exponents
(-4)**(2/3) will be interpreted as exp((2/3)
ln(-4)) which is an error since ln(-4) doesn’t
exist
((-4)**2)**(1/3); # correct

(-4)**(2/3); # incorrect

5. Named functions in Perl

• Trig functions are in radians: sin(2); asin(1/2);
• Square root: sqrt(9); There is no named cube root function
• Natural exponential: exp(2);
• Natural logarithm: ln(2); log(2); # so ln(x) = log(x) in Perl!!!!
• Base 10 log: logten(2);
• Absolute value: abs(-2);
• Sign / signum function:

sgn(-2); # returns -1
sgn(0); # returns 0
sgn(3.14); # returns 1

6. Relational and logical operators in
Perl

• Test whether two numbers are equal:
3 == 4; # returns 0 (false)

• Test whether two numbers are not equal:
3 != 4; # returns 1 (true)

• Test using inequalities <, <=, >, >=:
3 >= 4; # returns 0

6. Relational and logical operators in
Perl

• Test whether two strings are equal:
“Roy” eq “James”; # returns 0

• Test whether two strings are not equal:
“Roy” ne “James”; # returns 1

6. Relational and logical operators in
Perl

• Are both things true? The and operator &&:
(3==(4-1)) && (3==(2+1));

returns 1

• Is at least one thing true? The or operator ||:
(3==5) || (3 != 4); # returns 1

7. Conditional statements

• If-then statements:
$a = 5;
if ($a==4) { $b = 3; }

• The test statement is in rounded parens: ()

• The code to be executed is in curly braces: { }

• Notice $b=3; is complete, so the end is } not };

7. Conditional statements

• If-then-else statements:
$a = 7;

if ($a==7) {

$b=3;

} else {

$b=2;

}

7. Conditional statements

• If-then-elsif-else:
$i = 5;
if ($i == 5) {

$a = 1;
} elsif (“Roy” eq “James”) {

$a = 2;
} elsif ($i != 5) {

$a = 3;
} else {

$a = 4;
}

8. Loops

• For loops:
$n = 4;

for ($i=1; $i < 5; $i++) {

$n = $n + $i;

}

• Notice: the recursive assignment $n = $n + $i; is
allowed in Perl. We could have also done $n +=
$i; in place of $n = $n + $i;

• The final value for $n will be 14.

8. Loops

• Foreach loops run through arrays:
@evens = (); # an empty array

foreach my $i (0..50) {

$evens[$i] = 2 * $i;

}

• This will produce an array of 51 even numbers
0, 2, 4,…, 100

• Notice we used $evens[$i], not @evens[$i]

8. Loops

• do-until loop:
$a = 3;

do { $a=$a+1; } until ($a==10);

• Notice the { } for the code to be executed

• Notice the () for the condition to be tested

PG and MathObjects

1. History

• The PG (Problem Generation) language was
written by Michael Gage and Arnold Pizer (U.
of Rochester)

• PG is built on Perl

• PG provides macros (prewritten, re-usable
code)

• PG displays questions in two modes: HTML
and PDF output

1. History

• MathObjects is an extension of PG written by
Davide Cervone (Union College)

• M.O. “corrects” some quirks of Perl

• M.O. make writing problems easier

• M.O. provides more macros that are very
advanced

• M.O. answer checkers provide more feedback

2. Structure of a PG file

• Tagging info (for the indexing in the National
Problem Library)

• Initialization (loading macros, etc.)
• Setup (define parameters, randomization, etc.)
• Main text (the part that gets displayed to

students)
• Answer evaluation (checking the submitted

answers)
• Solution (optional) and end document

(mandatory)

2. Structure of a PG file

• Tagging info:

DESCRIPTION
Equations for lines
ENDDESCRIPTION

KEYWORDS('algebra','line','equation for line')

DBsubject('Algebra')
DBchapter('Basic Algebra')
DBsection('Lines')
Date('05/26/2011')
Author('Paul Pearson')
Institution('Fort Lewis College')
TitleText1('Intermediate Algebra')
EditionText1('3')
AuthorText1('Dewey, Cheatham, and Howe')
Section1('2.4')
Problem1('14')

2. Structure of a PG file

• Initialization

####################################
Initialization

DOCUMENT();
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"AnswerFormatHelp.pl",
);

TEXT(beginproblem());

2. Structure of a PG file

• Setup

##############################

Setup

Context("Numeric");

$a = non_zero_random(-5,5,1);

$b = random(2,9,1);

2. Structure of a PG file

• Main text

####################################
Main text

Context()->texStrings;
BEGIN_TEXT
Find an equation for a line through the point
\(($a,$b) \) and the origin.
$BR
$BR
\(y = \) \{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
END_TEXT
Context()->normalStrings;

2. Structure of a PG file

• Answer evaluation

################################
Answer evaluation

$showPartialCorrectAnswers = 1;

ANS(Formula("($b/$a) x")->cmp());

COMMENT('MathObject version');

ENDDOCUMENT();

2. Structure of a PG file

• Comments on Tagging info:
DBsubject, DBchapter, DBsection are all
required to file a problem in the NPL

• Comments on Initialization:
PGstandard.pl and MathObjects.pl should
always be loaded
TEXT(beginproblem()); dynamically generates
the problem number in the homework set

2. Structure of a PG file

• Comments on Setup:
Don’t over randomize --- choose parameter
values that you would like to do by hand when
a student brings a question to you

2. Structure of a PG file

• Comments on Main Text:
• A BEGIN_TEXT / END_TEXT block enters a new mode

with Perl mode outside, and TEXT mode inside
• In TEXT mode, you can temporarily switch to LaTeX

mode via \(\) for inline math, or \[\] for displaystyle
math (put on a new line & centered)
BEGIN_TEXT
This is inline \(\displaystyle
\left(\frac{3}{4} \right)^2 \).
This is on its own line \[
\frac{3}{4}. \]
END_TEXT

2. Structure of a PG file

• Comments on Main Text:

• Inside TEXT mode, you can also switch to Perl
mode by using \{ \}, for example
BEGIN_TEXT

\{ ans_rule(20) \}

END_TEXT

switches into Perl mode and runs the method
for generating an answer blank 20 characters
wide

2. Structure of a PG file

• Comments on Answer Evaluation:

• The method ->cmp() is defined for any
MathObject

• Formula(“($b/$a) x”)->cmp() takes the
student answer and compares it to the
Formula object, and returns either 0 or 1

• ANS(); takes that result and records it in the
database of student scores

2. Structure of a PG file

• Comments on Answer Evaluation:

• The COMMENT(‘MathObject version’); only
shows up for professors in the Library Browser

• Don’t forget ENDDOCUMENT();

3. Intro to MathObjects

• In Perl,
$f = “sin(x)”;

is just a string

• In MathObjects
Formula(“sin(x)”);

is much more than just a string

3. Intro to MathObjects

• A MathObject has methods defined on it
• A method to evaluate functions ->eval()

$f = Formula(“sin(x)”);
$f->eval(x=>5);

• A method for (partial) differentiation ->D()
$fp = $f->D(„x‟);

• A rudimentary simplification method ->reduce()
Formula(“sin(x) + -4”)->reduce(); # sin(x)-4

• A method that produces TeX ouput ->TeX()
BEGIN_TEXT
What is the derivative of \($f->TeX() \)
END_TEXT

• An answer checker method ->cmp()
ANS($f->cmp());

3. Intro to MathObjects

• Contexts can be modified:

Context(“Numeric”);
$f = Formula(“sin(x^2)”);

Context()->texStrings;
BEGIN_TEXT
Find the derivative of \($f \).
$BR
\{ ans_rule(20) \}
END_TEXT
Context()->normalStrings;

• Notice sin(x^2) with ^ instead of ** is OK within a MathObject
• Since we changed to texStrings, $f will be interpreted as $f->TeX, and

produce the string “\sin(x^2)”
• Notice that we changed back to normalStrings before doing any answer

evaluation

3. Intro to MathObjects

• Contexts can be modified:

Context(“Numeric”)->variables->add(
y=>”Real”

);

$f = Formula(“x^2+y^2”);

Context(“Numeric”);
Context()->variables->are(t=>”Real”);

$g = Formula(“sin(t+pi)”);

3. Intro to MathObjects

• Contexts can be modified:

Context(“Numeric”);

Context()->operators->undefine(“^”,”**”);

Context()->functions->disable(“Trig”);

Context()->functions->disable(“exp”);

$f = Formula(“x^2”); # error

$g = Formula(“sin(x)”); # error

• This also disables operators and functions for student answers

3. Intro to MathObjects

• Contexts can be modified

Context(“Numeric”);
Context()->variables->set(

x => { limits=>[2,5] }
);

$g = Compute(“sqrt(x-1)”);

• Setting limits to [2,5], Webwork randomly selects
points x in this interval and compares the values of $g
to the values of the student’s function at these points
(i.e., answer checking is numerical comparison). The
default is [-1,1].

3. Intro to MathObjects

• Contexts don’t have to be modified

Context(“Numeric”);

$f = Compute(“sqrt(x)”);
$f->{limits} = [2,5]; # domain issues

$g = Compute(“e^(20x)”);
$g->{limits} = [-0.25,0.25]; # e^(20) is too large

$h = Compute(“ln(x)”);
$h->{limits} = [4,10]; # domain issues

• Different functions above have different problems that need to be dealt
with individually, so don’t modify the context (all of them simultaneously)

Resources

Resources

• http://webwork.maa.org/wiki/File:WeBWorK_Problem_Authoring_Tutorial.pdf

• http://webwork.maa.org/wiki/SubjectAreaTemplates

• http://webwork.maa.org/wiki/IndexOfProblemTechniques

• http://webwork.maa.org/pod/pg_TRUNK/

• http://webwork.maa.org/viewvc/system/trunk/pg/macros/

• http://tobi.oetiker.ch/lshort/lshort.pdf

http://webwork.maa.org/wiki/File:WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/wiki/File:WeBWorK_Problem_Authoring_Tutorial.pdf
http://webwork.maa.org/wiki/SubjectAreaTemplates
http://webwork.maa.org/wiki/IndexOfProblemTechniques
http://webwork.maa.org/pod/pg_TRUNK/
http://webwork.maa.org/viewvc/system/trunk/pg/macros/
http://webwork.maa.org/viewvc/system/trunk/pg/macros/
http://tobi.oetiker.ch/lshort/lshort.pdf

