
January 2011 Problem Authoring Tutorial Paul Pearson
Fort Lewis College

Perl and PG
This tutorial on Perl and PG will familiarize you with the

basic constructs used most often when writing WebWork ques-
tions. It is not comprehensive and does not explain everything.
We will often provide links at the bottom of each page in case
you want to know more details. You could also use Google to
search for more details, or a textbook on Perl. If part of this tu-
torial is too difficult, has insufficient detail, or starts at too high
a level, please let me know by emailing paulZwebZworkATg-
mail.com (remove the Z’s – they’re to prevent spam).

PERL stands for Practical Extraction and Report Language.
PG stands for Problem Generation, and it is a language built on
Perl to write WebWork homework questions. Each PG file is
essentially a Perl script that produces output in HTML or PDF
(via pdfLaTeX). MathObjects are a recently developed part of
the PG language, and will be discussed separately.

Perl Basics
Perl has strings, which are enclosed by single quotes (which

are straight up on your keyboard, not slanted to the left) or dou-
ble quotes, and numbers. If you enclose a number with quotes
and perform mathematical operations on it, there will be no
problems (Perl will treat the string like a number). The com-
ment character in Perl is #. The semicolon ; ends a line of code
in Perl. It is possible to concatenate strings in Perl using a pe-
riod between them, as in "War " . "and Peace"; (notice the
space between the quote and War).

Online References
• Perl Language (perl.org)
• Perl Documentation (perldoc.perl.org)
• Perl tutorial (tizag.com)

Data Types in Perl
Perl has three principal data types: scalars, arrays, and

hashes. You will certainly need to learn how to use scalars,
and you should learn how to use arrays. For most WebWork
questions you write, you probably won’t need hashes.

(1) Scalars are any string or number. Named scalars start
with $.

$name = "Thomas Jefferson";
$value = -5;

(2) Arrays of scalars. Named arrays start with
@. Indexing for arrays always starts with zero.

@ordinals = ("First","Second","Third");
@values = (11,12,13);

For arrays of consecutive numbers or letters, you can
use the shortcuts below. Another useful shortcut is the

qw() function, which converts a space-separated list
into an array.
@values = (11..13);
@alphabet = (a..z);
@names = qw(Mike Arnie Davide);

(3) Hashes are associative arrays of scalars. Named
hashes start with %. An entry in a hash looks like
key => value and associates a value to each key with
notation very similar to function notation.
%rankings = (
First => "Twins",
Second => "Yankees"

);
%integers = (One => 1, Two => 2);

Scalars, arrays, and hashes can also be references to some-
thing. References are a bit more advanced and we discuss them
later.

Accessing Scalars and Using Array Indices
To access a scalar inside an array or a hash, use

$ordinals[0]
$ordinals[-1]
$rankings{Second}

to get the values First, Third, and Yankees. These all start with
$ because we’re accessing a scalar. Notice that the indexing for
the array starts with zero, and the last element in the ordinals
array can be accessed either with the index 2 or -1. You can get
the index for the last element in an array and the total number of
elements in an array using
$#ordinals
scalar(@ordinals)

which return 2 (since the indexing starts with zero) and 3. You
can create a new scalar whose value is an entry in an array or
hash using
$age = $values[1];
$myteam = $rankings{First};

which will set $age = 12; and $myteam = "Twins";

Printing an Array
If you print an array such as @names you will get 3, which is

not what you expected. If you use join(", ", @names); in-
stead, then subsequent elements will be joined by a comma fol-
lowed by a space and you will get Mike, Arnie, Davide, which
is what you want.

Online References
• Perl data types (cpan.org)
• Perl scalar variables (perltutorial.com)
• Perl arrays (perltutorial.com)
• Perl hashes (perltutorial.com)

1

• Perl strings (tizag.com)
• Perl variables (tizag.com)
• Perl arrays (tizag.com)
• Perl hashes (tizag.com)

Arithmetic in Perl
The following operations are defined in perl:

+, -, *, /, **, %, where 2**3 (=8) is exponentiation and
12 % 7 (=5) is modular arithmetic.

The syntax for arithmetic operations in Perl is straightfor-
ward with these exceptions.

(1) Always write * when multiplying, since juxtaposition
does not mean multiply in Perl.
5 * 2; # correct
(5)(2); # incorrect
5 2; # incorrect

(2) Use ** for exponentiation instead of ˆ, since ˆ is the
shift operator in Perl.
5**2; # correct
5ˆ2; # incorrect

(3) When subtracting or negating, use extra space or paren-
theses.
5 - -2; # correct
5 -(-2); # correct
5 + -2; # correct
5 +(-2); # correct

$a = -2;
5 - $a; # correct
5 -($a); # correct

which will return the correct values 7, 7, 3, 3, 7, 7.
However, if you don’t use extra space or parentheses,
you run into the problem that -- is the decrement oper-
ator in Perl (e.g., 5-- is the same as 4).
5--2; # error

(4) Be careful with fractional exponents. Perl will evaluate
(-4)**(2/3) as e(2/3) ln(−4) which will throw an error
since the natural log of -4 is undefined. The correct
syntax would be
((-4)**2)**(1/3);

which will return the value 2.51984209978975 we ex-
pect.

From a mathematicians perspective, these problems with Perl
arithmetic are rather annoying. In fact, later in the tutorial we
will see that a new part of the PG language called MathObjects,
which were created by Davide Cervone at Union College, will
circumvent the first three problems of Perl arithmetic. MathOb-
jects will not let you raise a negative number to a non-integer
power (it will give an error), so you will still have to be careful
with fractional exponents.

Online References

• Perl numbers (perl.org)
• Perl operators (perl.org)
• Perl numbers (tizag.com)
• Perl operators (tizag.com)

Mathematical Functions in Perl
WebWork automatically loads the following mathematical

Perl functions. We strongly recommend that you use these
functions inside of MathObjects whenever possible. Later in
the tutorial there will be an example of how to define a new
named function using MathObjects.

• sqrt(), square root (there is no cbrt, use fractional ex-
ponents instead)
• sin(), cos(), tan(), sec(), csc(), cot(),

trig functions in radians
• sinh(), cosh(), tanh(), sech(), csch(), coth(),

hyperbolic trig functions
• arcsin(), arccos(), arctan(), arcsec(),
arccsc(), arccot(), inverse trig functions in radi-
ans
• asin(), acos(), atan(), asec(), acsc(), acot(),

inverse trig functions in radians
• exp();, natural exponential function
• ln(), log(), natural logarithm function Caution: log

is the natural logarithm in Perl and MathObjects.
• logten(), base 10 logarithm function
• abs(), absolute value
• sgn() sign function, either -1, 0, or 1
• step() step function (0 if x < 0, 1 if x >= 0)
• fact() factorial function (defined only for non nega-

tive integers)
Online References

• Perl numbers (tizag.com)

Relational and Logical Operators in Perl
The following relational and logical operators are defined in

Perl. The syntax is different for comparing numbers and strings,
and it is important not to mix them up.

(1) == equality for numbers, eq equality for strings
(2) != not equal for numbers, ne not equal for strings
(3) < less than for numbers, lt less than for strings
(4) <= less than or equal for numbers, le less than or equal

for strings
(5) > greater than for numbers, gt greater than for strings
(6) >= greater than or equal for numbers, ge greater than or

equal for strings
(7) && and for numbers, and for strings
(8) || or for numbers, or for strings

Conditional Statements in Perl
The most commonly used conditional statements when writ-

ing WebWork questions are
(1) If-then statements:

2

if (5 == 5) { $a = 1; }
if (5 <= 6) { $b = 1; }
if ("Foo" eq "Foo") { }

The first two statements are true, so $a = 1; and
$b = 1;. The last statement is true, but no action is
taken since it is empty between the curly braces.

(2) If-then-else statements:
if (5 >= 6) {

$a = 1;
} else {

$a = 2;
}

The first statement is false, so $a = 2;

(3) If-then-elsif-then-else statements:
if (5 >= 6) {

$a = 1;
} elsif ("Roy" eq "James") {

$a = 2;
} else {

$a = 3;
}

The first two statements are false, so $a = 3;

(4) Compound statements:
if (5 >= 6 || 7 < 10) {

$a = 1;
}
if (5 >= 6 && 7 < 10) {

$b = 1;
}

The first if statement would set $a = 1;, but the second
if statement would take no action.

Online References
• Perl if statements (tizag.com)
• Perl operators (tizag.com)
• Perl if statements (perltutorial.com)

For and While Loops in Perl
(1) For loops have the general form

for (initial value, test, increment) {
code;

}

In this example, we add up the first four numbers and
store their value in $n. Notice the recursive assignment
$n = $n ... is allowed in Perl.
$n = 0;
for ($i = 1; $i < 5; $i++) {

$n = $n + $i;
}

(2) Foreach loops run through arrays and have the general
form

foreach $element @array {
code;

}

and will execute the code for each element of the ar-
ray. In this example we compute 4 factorial and store
it in $n. By writing my $i (instead of just $i) in the
foreach loop we declare the variable $i is local (it has
limited scope). This means that outside of the foreach
loop the variable $i always takes the value 75, while in-
side the foreach loop the variable $i will take the values
in the array (1..4), and the values outside and inside
the foreach loop never interfere with each other.

$i = 75;
$n = 1;
foreach my $i (1..4) {

$n = $n * $i;
}

Foreach loops can also be used to fill arrays with values.

@evens = ();
foreach my $i (0..10) {

$evens[$i] = 2*$i;
}

(3) While loops have the general form

while (condition) {
code;

}

and will continue to execute code as long as the condi-
tion remains true. In this example, we increment $i by
+1 so long as it is not equal to 5. We could have used <
instead of != and gotten the same end result $i = 5;.

$i = 0;
while ($i != 5) { $i++; }

Online References
• Perl for loops (perltutorial.com)
• Perl while loops (perltutorial.com)
• Perl for loops (tizag.com)
• Perl while loops (tizag.com)

Subroutines in Perl
Named subroutines (or procedures or methods) are blocks of

code that can take scalar inputs and return outputs. They have
the general form sub name { code; }.

(1) In this example we use a subroutine to define a function.

sub fx { my $t=shift(); return 4*cos($t); }

The shift operator grabs the input to the subroutine,
which is then stored in the local scalar variable $t. This

3

named subroutine can be used later, for example, to cre-
ate an array @xcoord of x-coordinates of points on the
radius 4 circle centered at the origin.
foreach my $i (0..6) {

$xcoord[$i] = fx($i);
}

(2) In this example, we create a subroutine that returns the
max of two numerical inputs.
sub max {

$a = shift();
$b = shift();
if ($a >= $b) {

return $a;
} else {

return $b;
}

}
max(-1,5);

(3) By default, the inputs to a subroutine are stored in the
local array @_ and the scalars in this array can be ac-
cessed via $_[0], $_[1], etc. We could rewrite our
max subroutine as follows.
sub max {

if ($_[0] >= $_[1]) {
return $_[0];

} else {
return $_[1];

}
}
max(-1,5);

Online References
• Perl subroutines (perltutorial.com)
• Perl sort (perl.org)
• Perl references (perl.org)

References in Perl
Recall that arrays and hashes in Perl are arrays and associa-

tive arrays of scalars. This means that Perl does not have arrays
of arrays (i.e., matrices). References were introduced in Perl 5
to make up for this shortcoming. A reference is a scalar that can
refer to an entire array, and if you have a reference to an array
you can recover the array from it. Since a reference is a scalar,
you can have an array of references, which is every bit as useful
as an array of arrays.

(1) If you put a backslash in front of an array or hash, yet
get a reference to it.
@array = (11..15);
%hash = (Jan => 1, Feb => 2);
$arrayref = \@array;
$hashref = \%hash;

(2) To recover an array or a hash from a reference, use
@{$ref} or %{$ref}

@newarray = @{$arrayref};
%newhash = %{$hashref};

(3) You can use the array @{$ref} and the hash %{$ref}
just like any other array or hash. For example, we ac-
cess the scalars in these arrays.

${$arrayref}[1]; # 12
$newarray[1]; # 12
${$hashref}{"Feb"}; # 2
$newhash{"Feb"}; # 2

(4) You can create unnamed (or anonymous) arrays
[items] and hashes { items } that return refer-
ences. We create some of these below and assign them
to scalar variables.

$aref = [11,12,13];
$href = { Mar => 3, Apr => 4 };

(5) We can use the unnamed (or anonymous) arrays to cre-
ate a named array of unnamed arrays (i.e., an array of
references).

@matrix = (
["a00", "a01", "a02"],
["a10", "a11", "a12"],
["a20", "a21", "a22"]
);

(6) We can access the scalars in this matrix using
$matrix[rowindex][columnindex]. Remember: the
indexing always starts with zero.

$matrix[1][2]; # element "a12"

(7) References can also be used to pass arrays to subrou-
tines. For example, suppose you want to create a sub-
routine that takes in two references to arrays of data and
processes them somehow.

arrays of data
@xdata = (10,23,31);
@ydata = (95,77,84);

sub data_processor {
read references
my $xref = shift;
my $yref = shift;
convert references to arrays
my @x = @{$xref};
my @y = @{$yref};
now process arrays @x and @y

}

inputs are references to arrays
data_processor(\@xdata, \@ydata);

Online References
• Perl references (perl.org)

4

PG document structure
A PG file uses Perl to produce a document that can be output

in HTML or PDF format. The general structure of a PG file is
much like the structure of HTML source code or a TeX source
file that becomes a PDF file when compiled by pdfLaTeX. PG
files typically have the following structure.

(1) Tagging information: With over 20,000 PG files in the
National Problem Library, every PG file should begin
with metadata can be used to index it in the library. The
tags DBsubject(), DBchapter(), and DBsection()
are necessary to put the PG file into the hierarchical
framework of the database. The best way to find where
your PG file fits in the database is to open the library
browser and find the appropriate subject, chapter, and
section. I like to view the source code of a problem that
has the right subject, chapter, and section, and just copy
and paste this information into my PG file. (Note: If
you’re copying and pasting from a PDF to a PG file, the
single quotes will be slanted, so you’ll have to replace
them by non-slanted single quotes. Ahh, the quirks of
TeX.)

DESCRIPTION
PG document structure
ENDDESCRIPTION

KEYWORDS(’sample’, ’WeBWorK’)

DBsubject(’WeBWorK’)
DBchapter(’WeBWorK Tutorial’)
DBsection(’Fort Lewis Tutorial 2011’)
Date(’01/30/2011’)
Author(’Paul Pearson’)
Institution(’Fort Lewis College’)
TitleText1(’’)
EditionText1(’’)
AuthorText1(’’)
Section1(’’)
Problem1(’’)

(2) Initialization: This is where we load macros and be-
gin the document. The macros PGstandard.pl and
MathObjects.pl should always be loaded. There are
many macros that can be loaded, so rather than trying
to describe them all here, we will let you look at which
macros are loaded in the template examples later in this
tutorial.

##########################
Initialization

DOCUMENT();

loadMacros(

"PGstandard.pl",
"MathObjects.pl",
);

TEXT(beginproblem());

$refreshCachedImages = 1;

(3) Setup: This is where we use Perl, PG, and MathObjects
to write the inner workings of the problem. We use
MathObjects to set the context (Numeric, Vector, etc.),
and define a MathObject using Compute.

##########################
Setup

Context("Numeric");

$r = random(3,9,1);
$answer = Compute("pi * $rˆ2");

(4) Main Text: Here we enter PG’s text mode, be-
tween BEGIN_TEXT and END_TEXT, and display the
question for the student. The BEGIN_TEXT and
END_TEXT commands must be at the beginning of the
line (no leading spaces) and also be the only thing
on their line. While in text mode, we can access
Perl mode via escaped curly braces \{ Perl code
here \}, and TeX inline mode via escaped rounded
parentheses \(TeX code here \), and TeX display
mode (centered) via escape square brackets \[TeX
code here \]. The code Context()->texStrings;
and Context()->normalStrings; outside of the text
block will ensure that any MathObjects that are used
in TeX mode will be beautifully typeset. The code
\{ ans_rule(10) \} produces an answer blank 10
characters wide.

##########################
Main Text

Context()->texStrings;
BEGIN_TEXT
What is the area of a circle of radius
\($r\)?
$BR
$BR
Area = \{ ans_rule(10) \}
END_TEXT
Context()->normalStrings;

(5) Answer Evaluation: This is where we use MathObjects
to check whether the student’s answer is correct. We de-
fined the MathObject $answer above in the Setup sec-
tion, and now we will call the method cmp() on it using

5

Perl’s syntax for object-oriented programming (the ar-
row). The subroutine ANS() will record the result in
the gradebook database.

#######################
Answer Evaluation

$showPartialCorrectAnswers = 1;

ANS($answer->cmp());

(6) Solution and End Document: The solution is optional,
but ending the document is mandatory (don’t forget it!).
With older versions of WebWork, it may be necessary
to use SOLUTION(EV3(<<’END_SOLUTION’)); instead
of BEGIN_SOLUTION.

#######################
Solution

Context()->texStrings;
BEGIN_SOLUTION
The formula for the area of
a circle of radius \(r\)
is \(\pi rˆ2\),
so the answer is
\($answer\).
END_SOLUTION
Context()->normalStrings;

ENDDOCUMENT();

Online References
• Tagging WebWork Problems
• Standard PG macros (POD documentation)
• Standard PG macros (source)
• Submitted PG macros (source)

Random Numbers in PG
The macro file PGstandard.pl automatically loads

PGbasicmacros.pl, which provides several random number
generating utilities. The list random generator chooses one item
from the comma separated list of numbers.

random(low,high,increment);
non_zero_random(low,high,increment);
list_random(list of numbers);

If you want random values between 0.2 and 0.5 with incre-
ment 0.1, you should use the list random option to avoid any
strange computer rounding errors (computers are binary, so they
don’t like tenths!). For example:

$a = list_random(0.2,0.3,0.4,0.5);
$b = random(0.2,0.5,0.1); # might return 0.299999999

Common Randomization Recipes
(1) Two distinct random integers:

$a = random(2,9,1);
do { $b = random(2,9,1); } until ($b != $a);

(2) Three distinct random integers:
$a = random(2,9,1);
do { $b = random(2,9,1);
} until ($b != $a);
do { $c = random(2,9,1);
} until (($c != $a) && ($c != $b));

(3) Generating an array of random integers:
@a = ();
foreach my $i (0..8) {

$a[$i] = random(2,9,1);
}
access these using $a[0], $a[1], etc.

(4) Controlling the size and the sign:
$s = random(-1,1,2);
$a = random(4,14,1);
$b = $s * $a;

Shared Randomization Across Files
If you have two different PG files and you want to use them

in the same homework set and have the same randomization,
you need to set the randomization seed to be the same in each
file. To do this, put the following code into both files before any
calls to random number generators. The SRAND function sets
the randomization seed, and psvn stands for problem set version
number.
SRAND($psvn);

Online References
• Standard PG macros (POD documentation)
• Standard PG macros (source)

Special Characters and Commands in PG
(1) Escape characters: Both TeX and Perl have backslash

their escape character (think of all the commands that
start with backslash like \newline in LaTeX and \n in
Perl). Since PG is built on both TeX and Perl, this cre-
ates a conflict — in PG, which language (TeX or Perl)
should get to use backslash as its escape character? To
resolve this conflict, PG reserves backslash as the es-
cape character for all TeX commands. To get the Perl
escape code to work in PG, use two tildes ∼∼ instead
of backslash. When the PG file is executed, the two
tildes (in PG mode) will automatically be remapped to
backslash (in Perl mode). So, if you have a reference to
an array in PG, you should use ∼∼@array instead of
\@array.

(2) A text block in a PG file is enclosed by
BEGIN_TEXT and END_TEXT, BEGIN_HINT END_HINT,
or BEGIN_SOLUTION END_SOLUTION. Everything in a
text block is in a new mode determined by PG, and
it is possible to temporarily switch to TeX inline mode

6

using \(\), TeX display mode using \[\], or Perl mode
using \{ \}. Inside a text block, you will not be able to
access some special characters like $, %, ˆ, simply by
typing them, so PG has special commands for them.

$DOLLAR produces \$
$PERCENT produces %
$CARET produces ˆ
$US produces _

In a text block, you may want to break a line, cre-
ate a new paragraph, center text, or make text bold,
italic, underlined, or quoted. The commands for these
things are different in HTML and TeX, so PG provides
you with commands that work properly in both HTML
and TeX. Notice that, for example, we have written
${BBOLD}Text made bold${EBOLD} with extra curly
braces around ${BBOLD} and ${EBOLD} to keep them
from running together with the text they enclose. How-
ever, since the centered text is on a separate line from
$BCENTER and $ECENTER, there is no chance of things
running together and we omit the extra curly braces.

$BR produces a line break
$PAR produces a paragraph break

$BCENTER
Text made centered
$ECENTER

${BBOLD}Text made bold${EBOLD}
${BITALIC}Text made italic${EITALIC}
${BUL}Text underlined${EUL}
${LQ}Quoted text with curly TeX quotes${RQ}

If you want inequalities or curly braces, use TeX’s math
mode.

\(<\) less than
\(>\) greater than
\(\leq\) less than or equal
\(\geq\) greater than or equal
\(\lbrace\) left curly brace
\(\rbrace\) right curly brace

The commands just discussed are defined in
PGbasicmacros.pl.

Online References
• Standard PG macros (POD documentation)
• Standard PG macros (source)

Auxiliary Functions in PG
The macro file PGauxiliaryFunctions.pl, which is automati-

cally loaded by PGstandard.pl, contains many useful numerical
recipies.

(1) The max function max(-1,4,2*pi,5); will return
6.28319.

(2) The min function min(10,2*pi,-1,5); will return -1.

(3) The greatest common factor (or divisor) function
gcf(4,6); or gcd(4,6); will return 2. For
perl code that gives an extended gcd function
xgcd(a,b) = d = axby+, see the online references
below.

(4) The least common multiple function lcm(4,6); will
return 12.

(5) The ceiling and floor functions ceil(-3.4); and
floor(-3.4); will return -3 and -4.

(6) The prime test function isPrime(4); and
isPrime(5); will return 0 and 1.

(7) The signum (or sign) function sgn(-pi); and sgn(0);
and sgn(6) will return -1, 0, and 1.

(8) The Heaviside step function, which is 1 when the in-
put is positive and zero otherwise, is step(-0.1); and
step(0); and step(0.1); which returns 0, 0, and 1.

(9) The integer rounding function round(1.49999);
and round(1.5); and round(-1.5); and
round(-1.49999); will return 1, 2, -2, -1.

Online References
• Standard PG macros (POD documentation)
• Standard PG macros (source)
• Extendend gcd function

Introduction to MathObjects
Perl has very limited data types: scalars (i.e., numbers and

strings), and arrays and hashes of scalars. To Perl, a string
like "sin(xˆ2+6)" is just a string, not a function. MathOb-
jects were created by Davide Cervone at Union College to ad-
dress this and other problems. MathObjects are a set of for-
mal objects introduced to make manipulation of mathematical
objects in WeBWorK problems more intuitive. For instance,
Formula("sin(xˆ2+6)") is a MathObject that takes the Perl
string "sin(xˆ2+6)" and makes it a function that can be evalu-
ated, differentiated, can produce a TeX representation, can pro-
duce a Perl function (i.e., a subroutine that returns the value of
this function), etc.

MathObjects are useful and powerful because they are much
more than just a number or a string — they know what context
they live in, mathematical operations can be done with them,
and they have methods defined on them.

(1) MathObjects know what context they live in:
Context("Numeric");
$f = Formula("sin(xˆ2/3)");
$a = Real("sqrt(pi/2)");

7

Context("Vector");
$v = Vector("<1,2,3>");

Context("Inequalities");
$domain = Inequality("-16 < x < 9");

In fact, we could replace Formula, Real, Vector, and
Inequality all by Compute, in which case MathOb-
jects would discern the type of object from the con-
text. Compute is usually the preferred way to convert
a string to a MathObject. It preserves the original string
and uses it to display the correct answer expected of the
student in the most useful form. The angle brackets in
the vector and the inequality are interpreted differently
(and correctly) because these MathObjects know which
context they live in.

(2) Mathematical operations can be done with MathOb-
jects:
Context("Numeric");
$f = Compute("sin(xˆ2/3)");
$a = Compute("sqrt(pi/2)");
$g = $a * $f;

Note that $g is a MathObject, as it is the product of two
MathObjects that live in the same context. Mathemat-
ical operations cannot be done with MathObjects that
live in different contexts.

(3) MathObjects have methods defined on them:
Context("Numeric");
$f = Compute("sin(xˆ2/3)");
$a = Compute("sqrt(pi/2)");

evaluate f(a)
$b = $f->eval(x=>$a);

partial derivative df/dx
$fx = $f->D(’x’);

basic algebraic simplification to x+4
$c = -4;
$g = Compute("x - $c")->reduce();

get a string of TeX code for f
returns "\sin\!\left(\frac{xˆ{2}}{3}\right)"
$h = $f->TeX();

We have called the evaluate ->eval(), partial differ-
entiation ->D(’x’), very basic algebraic simplifica-
tion ->reduce(), and TeX string ->TeX() methods on
MathObjects.

Why Use MathObjects?
(1) MathObjects convert ordinary strings into a rich vari-

ety of data types such as points, vectors, matrices, real

numbers, complex numbers, inequalities, etc. (Before
MathObjects, Perl strings were the best game in town.)

(2) You can use a single MathObject, such as a formula,
to produce numeric values, other formulas, TeX output,
and answer strings. This avoids having to type the func-
tion a multitude of different ways, which would make
maintaining the problem harder. (Before MathObjects,
you often had to produce each of these separately and
manually.)

(3) The answer checkers for MathObjects are better at giv-
ing students feedback on syntax errors and are more
versatile. (Before MathObjects, very little feedback
was given.)

(4) The basic syntax $f->cmp() for comparing a student’s
answer to the correct answer $f is the same no matter
what type of MathObject $f is. (Before MathObjects,
you had to know the name of the answer checker you
wanted to apply to a Perl string.)

Online References

• Talk on MathObjects
• MathObjects documentation
• Introduction to MathObjects
• Using MathObjects
• MathObjects Answer Checkers
• MathObjects README

Contexts in MathObjects

Contexts in MathObjects can be used to restrict the type of
answer students are allowed to enter. For example, you may
want to require your students to expand a factored polynomial
and combine all like terms, in which case you could use the Lim-
itedPolynomial context. The contexts I use most often are listed
below. All of these context require loading the PGstandard.pl
and MathObjects.pl macros, in addition to any specialized
macros listed. For a detailed list of all available contexts, see
Specialized Contexts.

(1) Context("Numeric");
Allow numbers and formulas to be entered.
Additional macros required: none

(2) Context("Fraction-NoDecimals"); and
Context("LimitedProperFraction");
Require students to enter fractions, or fully simplified
fractions.
Additional macros required: contextFraction.pl.

(3) Context("Inequalities"); and Context("Inequalities-Only");
Allow intervals to be entered as intervals or inequali-
ties, or require them only to be entered as inequalities.
Additional macros required: contextInequalities.pl.

8

(4) Context("Point");
Allow points to be entered.
Additional macros required: none

(5) Context("Vector"); and Context("Vector2D");
Allows vectors to be entered.
Additional macros required: parserVectorUtils.pl

(6) Context("LimitedPolynomial-Strict");
Allows only fully simplified polynomials as answers.
Additional macros required: contextLimitedPolynomial.pl

(7) Context("LimitedPowers");
Restrict the base or power allowed in exponentials.
Additional macros required: contextLimitedPowers.pl

(8) Context("PolynomialFactors");
Allow only entry of polynomials, and their products
and powers.
Additional macros required: contextPolynomialFactors.pl

We give an example of how to set up the Limited Proper Frac-
tion context. Setting up other contexts is similar.
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"contextFraction.pl",
);

Context("LimitedProperFraction");

Online References
• Specialized contexts
• Wiki docs on contexts
• Specialized parsers
• POD documentation
• PG macros

Using Contexts in MathObjects
A MathObjects context controls the names and values of vari-

ables and constants, the functions that are available, the math-
ematical operations that are available, the way parentheses and
angle brackets are interpreted, the strings that are allowed, and
various other settings involving tolerances and display formats.
We list some of the more commonly used features of contexts
below.

(1) Specifying which variables are defined in the context.
By default, the variable x is in the Numeric context. In
the first example, we add the variable y to the context,
while the second example sets t as the only variable al-
lowed (if a student enters a function of x, they will get
an error message). Whenever Context() is typed, it
refers to the current context.
Context("Numeric");
Context()->variables->add(y=>"Real");

Context()->variables->are(t=>"Real");

(2) Adding strings (words) to the context. By default,
the Numeric context already has the case-insensitive
strings ”NONE”, ”DNE”, ”INF”, ”INFINITY”, and
perhaps some others. We give an example of adding
the case-insensitive strings ”True” and ”T” to the con-
text, and letting ”T” be an alias for ”True”. If you
have a lot of strings to add to the context, use the
auto strings parser
Context("Numeric");
Context()->strings->add(
True => {},
T => {alias=>"True"}

);

(3) Disabling operations and functions. You can re-
quire students to enter their answers in a particu-
lar form by disabling functions and operations. We
give an example where we do not allow exponen-
tiation, the natural exponential and logarithm, and
aany trigonometric functions. For more details, see
disabling functions and operations
Context("Numeric");
Context()->operators->undefine("ˆ","**");
Context()->functions->disable("exp","log");
Context()->functions->disable("Trig");

(4) Adding named functions to the context. Suppose we
want to add a base two logarithm to the context, so that
students could enter log2(). For more details, see
adding functions to the context
loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"parserFunction.pl",
);

Context("Numeric");
parserFunction("log2(x)"=>"log(x)/log(2)");

(5) Specifying the values the variables may take (i.e., do-
main of function evaluation). For formulas, WebWork
checks student answers against the correct answer by
pointwise comparison at many points. The default is
that each variable is evaluated on the interval [-1,1].
This default should be changed if the formula is not de-
fined on the part of the interval [-1,1] or if the function
values are not between 10−4 and 106, e.g., if there is a
vertical asymptote or the formula is close to being iden-
tically zero. It is also possible to specify the domain

9

for each individual function being compared to the stu-
dent’s answers, as we shall see later.
Context("Numeric");
Context()->variables->set(x=>{limits=>[2,5]});

(6) Specifying the numerical tolerances for answers being
accepted as correct. The student’s answer may differ
slightly from the correct answer and still be marked cor-
rect. The default tolerance is a relative tolerance of 0.1
percent of the correct answer, which may allow many
incorrect answers to be marked correct when the cor-
rect answer is very large. It is also possible to specify
an absolute tolerance, in which case the student’s an-
swer must be correct to however many decimal places
you specify. The numerical tolerance may also be spec-
ified at the time of answer evaluation.
Context("Numeric");
Context()->flags->set(

tolerance=>0.0001,
tolType=>relative

);

Context()->flags->set(
tolerance=>0.0000001,
tolType=>absolute

);

Online References
• Variables in the context
• Adding strings to the context
• Parser Auto Strings
• Disabling functions and operators
• Adding functions to the context
• Formula test points
• Numerical tolerance
• Context flags

Creating MathObjects
Creating MathObjects is easy. MathObjects has a num-

ber of predefined constants such as pi, e, Infinity.
The following MathObjects can be created by using
loadMacros("PGstandard.pl","MathObjects.pl"); and
Context("Numeric"); unless specified otherwise. If there is
more than one correct answer to a question (or even if there
might be more than one answer to a question), you should cre-
ate a list of answers. If you create a MathObject from a (Perl)
string, use double quotes "1+$a xˆ2" so that the value for $a
gets substituted (single quotes ’ ’ would prevent this from
happening).

• $a = Real(25.238);
• $f = Formula("1 + $a xˆ2");
• $p = Point(5,-2,3);
• $I = Interval("(2,3]");
• $U = Union("(2,3]U[4,5)");

• $s = String("DNE");
• $M = Matrix([1,1,1],[0,1,1],[0,0,1]);
• $I = Infinity;
• $L = List(5,"1+x");
$L = List("5,1+x");
• $S = Set(-5,0,9);
$S = Set("{-5,0,9}");
$S = Set(); # empty set
$S = Set("{}"); # empty set
• Context("Vector");
$v = Vector(2,4,-1);
$v = Vector("<2,4,-1>");
$v = Vector("2i + 4j - k");
• Context("Complex");
$z = Complex(1,sqrt(5));
$z = Complex("1+5i");
• loadMacros("contextInequalities.pl");
Context("Inequalities"); \leavevmode\\\relax
$I = Inequality("2 < x <= 3");

You can set the properties of a MathObject after you create
it. We give an example of a function that is best tested on small
positive integers since (-1)ˆn may give errors otherwise.
Context("Numeric")->variables->are(n=>"Real");
$g = Formula("(-1)ˆn / n!");
$g->{test_points} = [[2],[3],[4],[5],[6]];

In another example, we set the limits (domain) for a particu-
lar function rather than for the whole context.
Context("Numeric");
$f = Formula("sqrt(x-1)");
$f->{limits} = [2,5];

Online References
• Test points for function evaluation

Methods Defined on MathObjects
All MathObjects have methods defined on them, such as cmp,

perl, perlFunction, value, TeX, string, stringify, and
getFlag. If the MathObject is a Formula, it also has the meth-
ods eval, reduce, substitute, and the differentiation opera-
tor D defined on them. We discuss the most commonly used of
these methods.

• The method cmp is used when checking student’s an-
swers. For example,
$answer1 = Compute("tan(x)");
$answer2 = List(Formula("5x"),Formula("3"));

ANS($answer1->cmp());
ANS($answer2->cmp());

• The method TeX produces TeX code from a MathOb-
ject. For example,
$f = Compute("sin(x)/x");

10

BEGIN_TEXT
\(\displaystyle $f->TeX\)
END_TEXT

where $f->TeX produces the TeX code
\frac{\sin(x)}{x}. To apply the TeX method au-
tomatically to every MathObject occurring inside a text
block, you can change the context to texStrings to in-
terpret all MathObject strings as TeX strings, but don’t
forget to change the context back to normalStrings.
Context()->texStrings;
BEGIN_TEXT
\(\displaystyle $f->TeX\)
END_TEXT
Context()->normalStrings;

• The method reduce method will perform very elemen-
tary simplification of formulas, such as changing ++ to
+, +- or -+ to -, and -- to -. For example,
$a = -1;
$f = Formula("x + $a y - $a z")->reduce;

will make it the same as $f = Formula("x-y+z").

• Calling the method eval on a formula produces a nu-
merical value (a Real).
$f = Formula("sin(x)");
$g = $f->eval(x=>pi/2);

will give $g the value 1.

• Calling the method substitute on a formula produces
a MathObject Formula (not a Real) with its parse string

intact (which may give more insightful correct answer
hints from the answer evaluator).
$f = Formula("sin(x)");
$g = $f->substitute(x=>pi/2);

will give $g the value Formula("sin(pi/2)").

• Calling the method D on a formula produces the deriva-
tive as a MathObject Formula.
$f = Formula("sin(x)");
$g = $f->D(’x’);

will set $g = Formula("cos(x)").
Online References

• Methods defined on MathObjects

Get Started Writing WeBWorK Questions
Congratulations on finishing the tutorial! I hope that it has

provided you with enough of the basics of Perl, PG, and Math-
Objects so that you can look at source code, understand what
it is doing, and write some of your own questions. I encourage
you to start looking at the examples and the documentation in
the links below. In particular, the complete templates by subject
area and the code snippets of problem techniques are invaluable
resources that are (for the most part) up to date and are good
models for your own code. We have also included links to other
common resources that may be more advanced.

Online References
• Complete templates by subject area
• Code snippets of problem techniques
• MathObjects documentation
• POD documentation

Generated by the WeBWorK system c©WeBWorK Team, Department of Mathematics, University of Rochester

11

