HowToEnterMathSymbols: Difference between revisions

From WeBWorK_wiki
Jump to navigation Jump to search
No edit summary
(Redirected page to Help:Entering mathematics)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
We use the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension] by [http://www.mediawiki.org/wiki/User:Dirk_Nuyens Dirk Nuyens]. This extension enables [http://www.mathjax.org/ MathJax] (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
#REDIRECT[[Help:Entering mathematics]]
 
== Usage ==
 
The following math environments are defined for inline style math:
* <code>\(...\)</code> and
* <code>&lt;math&gt;...&lt;/math&gt;</code>.
And the following math environments are defined for display style math:
* <code><nowiki>$$...$$</nowiki></code> (can be turned off, even per page),
* <code>\[...\]</code>,
* <code>\begin{...}...\end{...}</code> and
* <code>:&lt;math&gt;...&lt;/math&gt;</code>.
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.
 
== Example ==
 
=== Latex Code ===
 
<syntaxhighlight lang="latex">
<!-- some LaTeX macros we want to use: -->
\(
  \newcommand{\Re}{\mathrm{Re}\,}
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
\)
 
We consider, for various values of \(s\), the \(n\)-dimensional integral
\begin{align}
  \label{def:Wns}
  W_n (s)
  &:=
  \int_{[0, 1]^n}
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction.  As such,
the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance
to the origin after \(n\) steps.
 
By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for \(k\) a nonnegative integer
\begin{align}
  \label{eq:W3k}
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
at the end of the paper.
</syntaxhighlight>
 
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'')
 
=== Rendered text ===
 
<!-- This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.-->
 
<!-- some LaTeX macros we want to use: -->
\(
  \newcommand{\Re}{\mathrm{Re}\,}
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
\)
We consider, for various values of \(s\), the \(n\)-dimensional integral
\begin{align}
  \label{def:Wns}
  W_n (s)
  &:=
  \int_{[0, 1]^n}
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction.  As such,
the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance
to the origin after \(n\) steps.
By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for \(k\) a nonnegative integer
\begin{align}
  \label{eq:W3k}
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
at the end of the paper.
 
== Additional Information ==
 
* This documentation comes from the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension page]. Additional documentation on using MathJax can be found at [http://www.mathjax.org www.mathjax.org].
* Our MathJax config file defines some potentially helpful macros:
 
 
<syntaxhighlight lang="javascript">
//<![CDATA[
 
    MathJax.Hub.Config({
 
        tex2jax: {
 
            inlineMath: [ ["\\(","\\)"] ],
 
            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
 
            processEscapes: false,
 
            element: "content",
 
            ignoreClass: "(tex2jax_ignore|mw-search-results|searchresults)" /* note: this is part of a regex, check the docs! */
 
        },
 
        TeX: {
 
          Macros: {
 
            /* Wikipedia compatibility: these macros are used on Wikipedia */
 
            empty: '\\emptyset',
 
            P: '\\unicode{xb6}',
 
            Alpha: '\\unicode{x391}', /* FIXME: These capital Greeks don't show up in bold in \boldsymbol ... */
 
            Beta: '\\unicode{x392}',
 
            Epsilon: '\\unicode{x395}',
 
            Zeta: '\\unicode{x396}',
 
            Eta: '\\unicode{x397}',
 
            Iota: '\\unicode{x399}',
 
            Kappa: '\\unicode{x39a}',
 
            Mu: '\\unicode{x39c}',
 
            Nu: '\\unicode{x39d}',
 
            Pi: '\\unicode{x3a0}',
 
            Rho: '\\unicode{x3a1}',
 
            Sigma: '\\unicode{x3a3}',
 
            Tau: '\\unicode{x3a4}',
 
            Chi: '\\unicode{x3a7}',
 
            C: '\\mathbb{C}',        /* the complex numbers */
 
            N: '\\mathbb{N}',        /* the natural numbers */
 
            Q: '\\mathbb{Q}',        /* the rational numbers */
 
            R: '\\mathbb{R}',        /* the real numbers */
 
            Z: '\\mathbb{Z}',        /* the integer numbers */
 
            RR: '\\mathbb{R}',
 
            ZZ: '\\mathbb{Z}',
 
            NN: '\\mathbb{N}',
 
            QQ: '\\mathbb{Q}',
 
            CC: '\\mathbb{C}',
 
            FF: '\\mathbb{F}'
 
          }
 
        }
 
    });
 
//]]>
</syntaxhighlight>

Latest revision as of 18:34, 24 July 2012