HowToEnterMathSymbols: Difference between revisions

From WeBWorK_wiki
Jump to navigation Jump to search
No edit summary
(Redirected page to Help:Entering mathematics)
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
We use the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension] by [http://www.mediawiki.org/wiki/User:Dirk_Nuyens Dirk Nuyens]. This extension enables [http://www.mathjax.org/ MathJax] (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
#REDIRECT[[Help:Entering mathematics]]
 
== Usage ==
 
The following math environments are defined for inline style math:
* <code><nowiki>$...$</nowiki></code> (can be turned off, even per page),
* <code>\(...\)</code> and
* <code>&lt;math&gt;...&lt;/math&gt;</code>.
And the following math environments are defined for display style math:
* <code><nowiki>$$...$$</nowiki></code> (can be turned off, even per page),
* <code>\[...\]</code>,
* <code>\begin{...}...\end{...}</code> and
* <code>:&lt;math&gt;...&lt;/math&gt;</code>.
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.
 
This extension allows for typical LaTeX math integration.
For example:
<syntaxhighlight lang="latex">
<!-- some LaTeX macros we want to use: -->
$
  \newcommand{\Re}{\mathrm{Re}\,}
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
 
We consider, for various values of $s$, the $n$-dimensional integral
\begin{align}
  \label{def:Wns}
  W_n (s)
  &:=
  \int_{[0, 1]^n}
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction.  As such,
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
to the origin after $n$ steps.
 
By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for $k$ a nonnegative integer
\begin{align}
  \label{eq:W3k}
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
at the end of the paper.
</syntaxhighlight>
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'')
This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.
 
<!-- some LaTeX macros we want to use: -->
$
  \newcommand{\Re}{\mathrm{Re}\,}
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
 
We consider, for various values of $s$, the $n$-dimensional integral
\begin{align}
  \label{def:Wns}
  W_n (s)
  &:=
  \int_{[0, 1]^n}
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction.  As such,
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for $k$ a nonnegative integer
\begin{align}
  \label{eq:W3k}
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
at the end of the paper.
 
This documentation comes from the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension page]. Additional documentation on using MathJax can be found at www.mathjax.org.

Latest revision as of 18:34, 24 July 2012