IndefiniteIntegrals1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
(add historical tag and give links to newer problems.) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{historical}} | |||
<p style="font-size: 120%;font-weight:bold">This problem has been replaced with [https://openwebwork.github.io/pg-docs/sample-problems/IntegralCalc/IndefiniteIntegrals.html a newer version of this problem]</p> | |||
<h2>Indefinite Integrals and General Antiderivatives</h2> | <h2>Indefinite Integrals and General Antiderivatives</h2> | ||
<p style="background-color:# | [[File:IndefiniteIntegrals1.png|300px|thumb|right|Click to enlarge]] | ||
<p style="background-color:#f9f9f9;border:black solid 1px;padding:3px;"> | |||
This PG code shows how to check answers that are indefinite integrals or general antiderivatives. | This PG code shows how to check answers that are indefinite integrals or general antiderivatives. | ||
</p> | </p> | ||
* File location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg] | |||
* PGML location in OPL: [https://github.com/openwebwork/webwork-open-problem-library/blob/master/OpenProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg] | |||
<br clear="all" /> | |||
<p style="text-align:center;"> | <p style="text-align:center;"> | ||
[[SubjectAreaTemplates|Templates by Subject Area]] | [[SubjectAreaTemplates|Templates by Subject Area]] | ||
Line 16: | Line 21: | ||
<tr valign="top"> | <tr valign="top"> | ||
<th> PG problem file </th> | <th style="width: 40%"> PG problem file </th> | ||
<th> Explanation </th> | <th> Explanation </th> | ||
</tr> | </tr> | ||
Line 43: | Line 48: | ||
loadMacros( | loadMacros( | ||
'PGstandard.pl', | |||
'MathObjects.pl', | |||
'parserFormulaUpToConstant.pl', | |||
'PGML.pl', | |||
'PGcourse.pl' | |||
); | ); | ||
Line 75: | Line 81: | ||
<p> | <p> | ||
<b>Setup:</b> | <b>Setup:</b> | ||
Examples of specific and general antiderivatives: | |||
<ul> | |||
<li>Specific antiderivatives: <code>e^x, e^x + pi</code></li> | |||
<li>General antiderivatives: <code>e^x + C, e^x + C - 3, e^x + K</code></li> | |||
</ul> | |||
</p> | </p> | ||
<p> | <p> | ||
Line 88: | Line 98: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> | <td style="background-color:#ffdddd;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
BEGIN_PGML | |||
+ Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} | |||
Enter a specific antiderivative for | |||
+ Enter the most general antiderivative for [` e^x `]: [____________]{$general} | |||
[@ helpLink('formulas') @]* | |||
END_PGML | |||
Enter the most general antiderivative for | |||
</pre> | </pre> | ||
<td style="background-color:#ffcccc;padding:7px;"> | <td style="background-color:#ffcccc;padding:7px;"> | ||
<p> | <p> | ||
<b>Main Text:</b> | <b>Main Text:</b> | ||
</p> | </p> | ||
</td> | </td> | ||
Line 132: | Line 118: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> | <td style="background-color:#ddddff;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
BEGIN_PGML_SOLUTION | |||
Solution explanation goes here. | Solution explanation goes here. | ||
END_PGML_SOLUTION | |||
ENDDOCUMENT(); | ENDDOCUMENT(); | ||
Line 157: | Line 138: | ||
[[Category:Top]] | [[Category:Top]] | ||
[[Category: | [[Category:Sample Problems]] | ||
[[Category:Subject Area Templates]] |
Latest revision as of 10:13, 18 July 2023
This problem has been replaced with a newer version of this problem
Indefinite Integrals and General Antiderivatives

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'parserFormulaUpToConstant.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
BEGIN_PGML + Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} + Enter the most general antiderivative for [` e^x `]: [____________]{$general} [@ helpLink('formulas') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT(); |
Solution: |