Sage in WeBWorK: Difference between revisions

From WeBWorK_wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


  ##  First Homework Problem File for
  ##  First Homework Problem File for
:##  Calculus
##  Calculus
:##  Partial Derivatives
##  Partial Derivatives
:##  Unit 1
##  Unit 1
:##  
##  
 
DOCUMENT();
DOCUMENT();
 
loadMacros(
loadMacros(
"PGstandard.pl",
"PGstandard.pl",
"PGchoicemacros.pl",
"PGchoicemacros.pl",
"MathObjects.pl",
"MathObjects.pl",
);
);
 
Context()->strings->add(none=>{});
Context()->strings->add(none=>{});
 
TEXT(beginproblem());
TEXT(beginproblem());  
 
$x0 = non_zero_random(-2,2,1);   
$x0 = non_zero_random(-2,2,1);   
$y0 = non_zero_random(-2,2,1);   
$y0 = non_zero_random(-2,2,1);  
 
   
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);
 
TEXT(<<EOF);
TEXT(<<EOF);
<div id="singlecell-test"><script type="text/code">
<div id="singlecell-test"><script type="text/code">
 
 
#########  Sage code pasted starting here ##########
#########  Sage code pasted starting here ##########
 
var('x,y,t,s')
var('x,y,t,s')
 
#  
#  
 
M=x*y
M=x*y
N=-y
N=-y
     
     
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']],
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']],
bottom=[['xx'],['yy']]))
bottom=[['xx'],['yy']]))
def _(  x0 = input_box(0,width=5,label='$x_0$'),
def _(  x0 = input_box(0,width=5,label='$x_0$'),
        y0 = input_box(0,width=5,label='$y_0$'),
        y0 = input_box(0,width=5,label='$y_0$'),
        delx = input_box(1,width=5,label='$\Delta{x}$'),
        delx = input_box(1,width=5,label='$\Delta{x}$'),
        dely = input_box(1,width=5,label='$\Delta{y}$'),
        dely = input_box(1,width=5,label='$\Delta{y}$'),
        xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
        xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
        yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
        yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
           
           
    G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
    G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
    G += arrow((x0,y0),(x0+delx,y0+dely))
    G += arrow((x0,y0),(x0+delx,y0+dely))
    show(G)
    show(G)
 
 
##############  End of Sage Code ######################
##############  End of Sage Code ######################  
 
 
</script></div>
</script></div>
 
  <script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
    <script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
  <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>
    <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>  
 
  <script type="text/javascript">
    <script type="text/javascript">
$(function() { // load only when the page is loaded
$(function() { // load only when the page is loaded
  var makecells = function() {
  var makecells = function() {
  singlecell.makeSinglecell({
  singlecell.makeSinglecell({
      inputLocation: "#singlecell-test",
      inputLocation: "#singlecell-test",
      editor: "codemirror",
      editor: "codemirror",
      hide: ["editor","computationID","files","messages","sageMode"],
      hide: ["editor","computationID","files","messages","sageMode"],
      evalButtonText: "Start/Restart",
      evalButtonText: "Start/Restart",
      replaceOutput: true});
      replaceOutput: true});
  }
  }
 
  singlecell.init(makecells); // load Single Cell libraries and then
  singlecell.init(makecells); // load Single Cell libraries and then
                              // initialize Single Cell instances
                              // initialize Single Cell instances
 
  });
  });
  </script>
  </script>
EOF
EOF
 
############### Below is the normal WebWork pg stuff #####################
############### Below is the normal WebWork pg stuff #####################
 
Context()->texStrings;
Context()->texStrings;
BEGIN_TEXT
BEGIN_TEXT
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \).
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \).
$BR $BR
$BR $BR
\( f($x0,$y0) = \)\{ ans_rule(15) \}  
\( f($x0,$y0) = \)\{ ans_rule(15) \}  
$PAR
$PAR
END_TEXT
END_TEXT
Context()->normalStrings;
Context()->normalStrings;
 
 
#  need to add reasonable approximation error of about 0.1 or so.
#  need to add reasonable approximation error of about 0.1 or so.
ANS( Compute($f0)->cmp() );
ANS( Compute($f0)->cmp() );
 
ENDDOCUMENT();        # This should be the last executable line in the problem.
 
 
ENDDOCUMENT();        # This should be the last executable line in the problem.
 
 


To pass perl variables to the sage block if you need to from the problem initialization use:
To pass perl variables to the sage block if you need to from the problem initialization use:

Revision as of 21:30, 30 December 2011

Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .

For use within WebWork, a special "single-cell" version of Sage is located at

##  First Homework Problem File for
##  Calculus
##  Partial Derivatives
##  Unit 1
## 

DOCUMENT();

loadMacros(
"PGstandard.pl",
"PGchoicemacros.pl",
"MathObjects.pl",
);

Context()->strings->add(none=>{});

TEXT(beginproblem()); 

$x0 = non_zero_random(-2,2,1);  
$y0 = non_zero_random(-2,2,1);   

$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);

TEXT(<<EOF);
<script type="text/code">


#########  Sage code pasted starting here ##########

var('x,y,t,s')

# 

M=x*y
N=-y
      
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']],
bottom=[['xx'],['yy']]))
def _(  x0 = input_box(0,width=5,label='$x_0$'),
        y0 = input_box(0,width=5,label='$y_0$'),
        delx = input_box(1,width=5,label='$\Delta{x}$'),
        dely = input_box(1,width=5,label='$\Delta{y}$'),
        xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
        yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
            
    G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
    G += arrow((x0,y0),(x0+delx,y0+dely))
    show(G)


##############  End of Sage Code ###################### 


</script>
   <script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>
   <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script> 

   <script type="text/javascript">
$(function() { // load only when the page is loaded
  var makecells = function() {
  singlecell.makeSinglecell({
      inputLocation: "#singlecell-test",
      editor: "codemirror",
      hide: ["editor","computationID","files","messages","sageMode"],
      evalButtonText: "Start/Restart",
      replaceOutput: true});
  }

  singlecell.init(makecells); // load Single Cell libraries and then
                              // initialize Single Cell instances

  });
  </script>
EOF

############### Below is the normal WebWork pg stuff #####################

Context()->texStrings;
BEGIN_TEXT
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \).
$BR $BR
\( f($x0,$y0) = \)\{ ans_rule(15) \} 
$PAR
END_TEXT
Context()->normalStrings;

#  need to add reasonable approximation error of about 0.1 or so.
ANS( Compute($f0)->cmp() );

ENDDOCUMENT();        # This should be the last executable line in the problem.

To pass perl variables to the sage block if you need to from the problem initialization use:

TEXT(<<EOF);

where <<EOF allows interpolation

otherwise use:

TEXT(<<'EOF');

where 'EOF' tells perl not to interpolate variables