Sage in WeBWorK: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
## First Homework Problem File for | ## First Homework Problem File for | ||
## Calculus | |||
## Partial Derivatives | |||
## Unit 1 | |||
## | |||
DOCUMENT(); | DOCUMENT(); | ||
loadMacros( | loadMacros( | ||
"PGstandard.pl", | "PGstandard.pl", | ||
"PGchoicemacros.pl", | "PGchoicemacros.pl", | ||
"MathObjects.pl", | "MathObjects.pl", | ||
); | ); | ||
Context()->strings->add(none=>{}); | Context()->strings->add(none=>{}); | ||
TEXT(beginproblem()); | TEXT(beginproblem()); | ||
$x0 = non_zero_random(-2,2,1); | $x0 = non_zero_random(-2,2,1); | ||
$y0 = non_zero_random(-2,2,1); | $y0 = non_zero_random(-2,2,1); | ||
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1); | $f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1); | ||
TEXT(<<EOF); | TEXT(<<EOF); | ||
<div id="singlecell-test"><script type="text/code"> | <div id="singlecell-test"><script type="text/code"> | ||
######### Sage code pasted starting here ########## | ######### Sage code pasted starting here ########## | ||
var('x,y,t,s') | var('x,y,t,s') | ||
# | # | ||
M=x*y | M=x*y | ||
N=-y | N=-y | ||
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], | @interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], | ||
bottom=[['xx'],['yy']])) | bottom=[['xx'],['yy']])) | ||
def _( x0 = input_box(0,width=5,label='$x_0$'), | def _( x0 = input_box(0,width=5,label='$x_0$'), | ||
y0 = input_box(0,width=5,label='$y_0$'), | |||
delx = input_box(1,width=5,label='$\Delta{x}$'), | |||
dely = input_box(1,width=5,label='$\Delta{y}$'), | |||
xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'), | |||
yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')): | |||
G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true) | |||
G += arrow((x0,y0),(x0+delx,y0+dely)) | |||
show(G) | |||
############## End of Sage Code ###################### | ############## End of Sage Code ###################### | ||
</script></div> | </script></div> | ||
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script> | |||
<script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script> | |||
<script type="text/javascript"> | |||
$(function() { // load only when the page is loaded | $(function() { // load only when the page is loaded | ||
var makecells = function() { | |||
singlecell.makeSinglecell({ | |||
inputLocation: "#singlecell-test", | |||
editor: "codemirror", | |||
hide: ["editor","computationID","files","messages","sageMode"], | |||
evalButtonText: "Start/Restart", | |||
replaceOutput: true}); | |||
} | |||
singlecell.init(makecells); // load Single Cell libraries and then | |||
// initialize Single Cell instances | |||
}); | |||
</script> | |||
EOF | EOF | ||
############### Below is the normal WebWork pg stuff ##################### | ############### Below is the normal WebWork pg stuff ##################### | ||
Context()->texStrings; | Context()->texStrings; | ||
BEGIN_TEXT | BEGIN_TEXT | ||
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). | Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). | ||
$BR $BR | $BR $BR | ||
\( f($x0,$y0) = \)\{ ans_rule(15) \} | \( f($x0,$y0) = \)\{ ans_rule(15) \} | ||
$PAR | $PAR | ||
END_TEXT | END_TEXT | ||
Context()->normalStrings; | Context()->normalStrings; | ||
# need to add reasonable approximation error of about 0.1 or so. | |||
# need to add reasonable approximation error of about 0.1 or so. | ANS( Compute($f0)->cmp() ); | ||
ANS( Compute($f0)->cmp() ); | |||
ENDDOCUMENT(); # This should be the last executable line in the problem. | |||
ENDDOCUMENT(); # This should be the last executable line in the problem. | |||
To pass perl variables to the sage block if you need to from the problem initialization use: | To pass perl variables to the sage block if you need to from the problem initialization use: |
Revision as of 21:30, 30 December 2011
Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .
For use within WebWork, a special "single-cell" version of Sage is located at
## First Homework Problem File for ## Calculus ## Partial Derivatives ## Unit 1 ## DOCUMENT(); loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", ); Context()->strings->add(none=>{}); TEXT(beginproblem()); $x0 = non_zero_random(-2,2,1); $y0 = non_zero_random(-2,2,1); $f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1); TEXT(<<EOF);
<script type="text/code">
######### Sage code pasted starting here ########## var('x,y,t,s') # M=x*y N=-y @interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], bottom=[['xx'],['yy']])) def _( x0 = input_box(0,width=5,label='$x_0$'), y0 = input_box(0,width=5,label='$y_0$'), delx = input_box(1,width=5,label='$\Delta{x}$'), dely = input_box(1,width=5,label='$\Delta{y}$'), xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'), yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')): G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true) G += arrow((x0,y0),(x0+delx,y0+dely)) show(G) ############## End of Sage Code ######################</script>
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script> <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script> <script type="text/javascript"> $(function() { // load only when the page is loaded var makecells = function() { singlecell.makeSinglecell({ inputLocation: "#singlecell-test", editor: "codemirror", hide: ["editor","computationID","files","messages","sageMode"], evalButtonText: "Start/Restart", replaceOutput: true}); } singlecell.init(makecells); // load Single Cell libraries and then // initialize Single Cell instances }); </script> EOF ############### Below is the normal WebWork pg stuff ##################### Context()->texStrings; BEGIN_TEXT Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). $BR $BR \( f($x0,$y0) = \)\{ ans_rule(15) \} $PAR END_TEXT Context()->normalStrings; # need to add reasonable approximation error of about 0.1 or so. ANS( Compute($f0)->cmp() ); ENDDOCUMENT(); # This should be the last executable line in the problem.
To pass perl variables to the sage block if you need to from the problem initialization use:
- TEXT(<<EOF);
where <<EOF allows interpolation
otherwise use:
- TEXT(<<'EOF');
where 'EOF' tells perl not to interpolate variables