ImplicitPlane: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 3: | Line 3: | ||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | ||
<em>This shows the PG code to evaluate answers that are planes defined implicitly by an equation.</em> | <em>This shows the PG code to evaluate answers that are planes defined implicitly by an equation.</em> | ||
</p> | |||
<ul> | <ul> | ||
<li>http://webwork.maa.org/doc/cvs/pg_CURRENT/macros/parserImplicitPlane.pl</li> | <li>POD documenatation: http://webwork.maa.org/doc/cvs/pg_CURRENT/macros/parserImplicitPlane.pl</li> | ||
<li>PG code: http://cvs.webwork.rochester.edu/viewcvs.cgi/pg/macros/parserImplicitPlane.pl</li> | |||
</ul> | </ul> | ||
<p style="text-align:center;"> | <p style="text-align:center;"> | ||
[[IndexOfProblemTechniques|Problem Techniques Index]] | [[IndexOfProblemTechniques|Problem Techniques Index]] | ||
</p> | </p> | ||
<table cellspacing="0" cellpadding="2" border="0"> | <table cellspacing="0" cellpadding="2" border="0"> | ||
<tr valign="top"> | <tr valign="top"> |
Revision as of 22:28, 22 January 2010
Planes Defined Implicitly
This shows the PG code to evaluate answers that are planes defined implicitly by an equation.
- POD documenatation: http://webwork.maa.org/doc/cvs/pg_CURRENT/macros/parserImplicitPlane.pl
- PG code: http://cvs.webwork.rochester.edu/viewcvs.cgi/pg/macros/parserImplicitPlane.pl
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserImplicitPlane.pl", "parserVectorUtils.pl", "PGcourse.pl", ); TEXT(beginproblem); |
Initialization:
In particular, we need to include the |
Context("ImplicitPlane"); # Vectors in the plane $AB = non_zero_vector3D(); $AC = non_zero_vector3D(); while (areParallel $AB $AC) {$AC = non_zero_vector3D()} # The normal vector $N = cross $AB $AC; # or $N = $AB x $AC; # The points A, B and C $A = non_zero_point3D(); $B = Point($A + $AB); $C = Point($A + $AC); |
Setup: Create points and vectors. Make sure that the vectors are not parallel. |
Context()->texStrings; BEGIN_TEXT An implicit equation for the plane passing through the points \($A\), \($B\), and \($C\) is \{ans_rule(40)\}. END_TEXT Context()->normalStrings; |
Main Text: Self-explanatory. |
ANS(ImplicitPlane($A,$N)->cmp); $showPartialCorrectAnswers = 1; ENDDOCUMENT(); |
Answer Evaluation: Just specify a point $A and a normal vector $N. |