DifferentiatingFormulas: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 52: | Line 52: | ||
$fxa = $fx->eval(x=>"$a"); | $fxa = $fx->eval(x=>"$a"); | ||
$fy = $f->D('y'); | $fy = $f->D('y'); | ||
$ | $fyx = $fy->D('x'); | ||
</pre> | </pre> | ||
</td> | </td> | ||
| Line 82: | Line 82: | ||
\( f_y(x,y) \) = \{ans_rule(20)\} | \( f_y(x,y) \) = \{ans_rule(20)\} | ||
$PAR | $PAR | ||
\( f_{ | \( f_{yx} (x,y) \) = \{ans_rule(20)\} | ||
END_TEXT | END_TEXT | ||
Context()->normalStrings; | Context()->normalStrings; | ||
| Line 102: | Line 102: | ||
ANS( $fxa->cmp() ); | ANS( $fxa->cmp() ); | ||
ANS( $fy ->cmp() ); | ANS( $fy ->cmp() ); | ||
ANS( $ | ANS( $fyx->cmp() ); | ||
ENDDOCUMENT; | ENDDOCUMENT; | ||
Revision as of 01:32, 4 March 2010
Differentiating Formulas: PG Code Snippet
This PG code shows how to differentiate a MathObjects Formula.
| PG problem file | Explanation |
|---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", ); TEXT(beginproblem()); |
Initialization:
In the initialization section, we need to include the macro file |
Context("Numeric")->variables->add(y=>"Real");
$a = random(2,4,1);
$f = Formula("x*y^2");
$fx = $f->D('x');
$fxa = $fx->eval(x=>"$a");
$fy = $f->D('y');
$fyx = $fy->D('x');
|
Setup:
The |
Context()->texStrings;
BEGIN_TEXT
Suppose \( f(x) = $f \). Then
$PAR
\( \displaystyle \frac{\partial f}{\partial x} \) = \{ans_rule(20)\}
$PAR
\( f_x ($a,y) \) = \{ans_rule(20)\}
$PAR
\( f_y(x,y) \) = \{ans_rule(20)\}
$PAR
\( f_{yx} (x,y) \) = \{ans_rule(20)\}
END_TEXT
Context()->normalStrings;
|
Main Text: The problem text section of the file is as we'd expect. |
ANS( $fx ->cmp() ); ANS( $fxa->cmp() ); ANS( $fy ->cmp() ); ANS( $fyx->cmp() ); ENDDOCUMENT; |
Answer Evaluation: As is the answer. |