IndefiniteIntegrals1: Difference between revisions

From WeBWorK_wiki
Jump to navigation Jump to search
(Created page with '<h2>Indefinite Integrals and General Antiderivatives</h2> <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> This PG code shows how to check answers that a…')
 
No edit summary
Line 71: Line 71:
#  Marks correct e^x, e^x + pi, etc
#  Marks correct e^x, e^x + pi, etc
#
#
$specific = Formula("e^x")->flags(upToConstant=>1);
$specific = Formula("e^x");


#
#
#  General antiderivative
#  General antiderivative
#  Marks correct e^x + C, e^x + C - 3, e^x + K, etc.
#  Marks correct  
#
#
$general = FormulaUpToConstant("e^x");
$general = FormulaUpToConstant("e^x");
Line 82: Line 82:
<td style="background-color:#ffffcc;padding:7px;">
<td style="background-color:#ffffcc;padding:7px;">
<p>
<p>
<b>Setup:</b>  
<b>Setup:</b>
The specific antiderivative should mark correct answers such as <code>e^x, e^x + pi</code>, etc.  The general antiderivative should mark correct answers such as <code>e^x + C, e^x + C - 3, e^x + K</code>, etc.
</p>
<p>
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below).  For the general antiderivative, we use the <code>FormulaUpToConstant()</code> constructor provided by <code>parserFormulaUpToConstant.pl</code>.
</p>
</p>
</td>
</td>
Line 119: Line 123:
$showPartialCorrectAnswers = 1;
$showPartialCorrectAnswers = 1;


ANS( $specific->cmp() );
ANS( $specific->cmp(upToConstant=>1) );
ANS( $general ->cmp() );
 
ANS( $general->cmp() );
</pre>
</pre>
<td style="background-color:#eeccff;padding:7px;">
<td style="background-color:#eeccff;padding:7px;">
<p>
<p>
<b>Answer Evaluation:</b>
<b>Answer Evaluation:</b>
For the specific antiderivative, we must use <code>upToConstant=>1</code>, otherwise the only answer that will be marked correct will be <code>e^x</code>.
</p>
</p>
</td>
</td>

Revision as of 03:17, 2 December 2010

Indefinite Integrals and General Antiderivatives

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.

  • Download file: File:IndefiniteIntegrals1.txt (change the file extension from txt to pg when you save it)
  • File location in NPL: NationalProblemLibrary/FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg

Templates by Subject Area

PG problem file Explanation

Problem tagging data

Problem tagging:

DOCUMENT();

loadMacros(
"PGstandard.pl",
"MathObjects.pl",
"AnswerFormatHelp.pl",
"parserFormulaUpToConstant.pl",
);

TEXT(beginproblem());

Initialization:

Context("Numeric");

#
#  Specific antiderivative:
#  Marks correct e^x, e^x + pi, etc
#
$specific = Formula("e^x");

#
#  General antiderivative
#  Marks correct 
#
$general = FormulaUpToConstant("e^x");

Setup: The specific antiderivative should mark correct answers such as e^x, e^x + pi, etc. The general antiderivative should mark correct answers such as e^x + C, e^x + C - 3, e^x + K, etc.

The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the FormulaUpToConstant() constructor provided by parserFormulaUpToConstant.pl.

Context()->texStrings;
BEGIN_TEXT
Enter a specific antiderivative for \( e^x \): 
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
$BR
$BR
Enter the most general antiderivative for \( e^x \): 
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
END_TEXT
Context()->normalStrings;

Main Text:

$showPartialCorrectAnswers = 1;

ANS( $specific->cmp(upToConstant=>1) );

ANS( $general->cmp() );

Answer Evaluation: For the specific antiderivative, we must use upToConstant=>1, otherwise the only answer that will be marked correct will be e^x.

Context()->texStrings;
BEGIN_SOLUTION
${PAR}SOLUTION:${PAR}
Solution explanation goes here.
END_SOLUTION
Context()->normalStrings;

COMMENT('MathObject version.');

ENDDOCUMENT();

Solution:

Templates by Subject Area