IndefiniteIntegrals1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<h2>Indefinite Integrals and General Antiderivatives</h2> | <h2>Indefinite Integrals and General Antiderivatives</h2> | ||
[[File:IndefiniteIntegrals1.png|300px|thumb|right|Click to enlarge]] | |||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | ||
This PG code shows how to check answers that are indefinite integrals or general antiderivatives. | This PG code shows how to check answers that are indefinite integrals or general antiderivatives. | ||
</p> | </p> | ||
* Download file: [[File:IndefiniteIntegrals1.txt]] (change the file extension from txt to pg when you save it) | |||
* File location in NPL: <code>FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg</code> | |||
<br clear="all" /> | |||
<p style="text-align:center;"> | <p style="text-align:center;"> | ||
[[SubjectAreaTemplates|Templates by Subject Area]] | [[SubjectAreaTemplates|Templates by Subject Area]] |
Revision as of 21:27, 2 December 2010
Indefinite Integrals and General Antiderivatives

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- Download file: File:IndefiniteIntegrals1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", "parserFormulaUpToConstant.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
Context()->texStrings; BEGIN_TEXT Enter a specific antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} $BR $BR Enter the most general antiderivative for \( e^x \): \{ ans_rule(20) \} \{ AnswerFormatHelp("formulas") \} END_TEXT Context()->normalStrings; |
Main Text: |
$showPartialCorrectAnswers = 1; ANS( $specific->cmp(upToConstant=>1) ); ANS( $general->cmp() ); |
Answer Evaluation:
For the specific antiderivative, we must use |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version.'); ENDDOCUMENT(); |
Solution: |