IndefiniteIntegrals1: Difference between revisions
Jump to navigation
Jump to search
Paultpearson (talk | contribs) (PGML example link) |
(Removes the AnswerFormatHelp macro and some other cleanup.) |
||
Line 16: | Line 16: | ||
<tr valign="top"> | <tr valign="top"> | ||
<th> PG problem file </th> | <th style="width: 40%"> PG problem file </th> | ||
<th> Explanation </th> | <th> Explanation </th> | ||
</tr> | </tr> | ||
Line 43: | Line 43: | ||
loadMacros( | loadMacros( | ||
'PGstandard.pl', | |||
'MathObjects.pl', | |||
'parserFormulaUpToConstant.pl', | |||
'PGML.pl', | |||
'PGcourse.pl' | |||
); | ); | ||
Line 92: | Line 93: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> | <td style="background-color:#ffdddd;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
BEGIN_PGML | |||
+ Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} | |||
Enter a specific antiderivative for | |||
+ Enter the most general antiderivative for [` e^x `]: [____________]{$general} | |||
[@ helpLink('formulas') @]* | |||
END_PGML | |||
Enter the most general antiderivative for | |||
</pre> | </pre> | ||
<td style="background-color:#ffcccc;padding:7px;"> | <td style="background-color:#ffcccc;padding:7px;"> | ||
<p> | <p> | ||
<b>Main Text:</b> | <b>Main Text:</b> | ||
</p> | </p> | ||
</td> | </td> | ||
Line 136: | Line 113: | ||
<td style="background-color:#ddddff;border:black 1px dashed;"> | <td style="background-color:#ddddff;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
BEGIN_PGML_SOLUTION | |||
Solution explanation goes here. | Solution explanation goes here. | ||
END_PGML_SOLUTION | |||
ENDDOCUMENT(); | ENDDOCUMENT(); |
Revision as of 16:19, 10 March 2023
Indefinite Integrals and General Antiderivatives

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( 'PGstandard.pl', 'MathObjects.pl', 'parserFormulaUpToConstant.pl', 'PGML.pl', 'PGcourse.pl' ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); $specific = Formula("e^x"); $general = FormulaUpToConstant("e^x"); |
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
BEGIN_PGML + Enter a specific antiderivative for [` e^x `]: [____________]{$specific->cmp(upToConstant=>1)} + Enter the most general antiderivative for [` e^x `]: [____________]{$general} [@ helpLink('formulas') @]* END_PGML |
Main Text: |
BEGIN_PGML_SOLUTION Solution explanation goes here. END_PGML_SOLUTION ENDDOCUMENT(); |
Solution: |