LimitsOfIntegration1: Difference between revisions
Jump to navigation
Jump to search
(Created page with '<h2>Answer Blanks in the Limits of Integration</h2> 300px|thumb|right|Click to enlarge <p style="background-color:#f9f9f9;border:black solid 1p…') |
No edit summary |
||
Line 115: | Line 115: | ||
Context()->texStrings; | Context()->texStrings; | ||
BEGIN_TEXT | BEGIN_TEXT | ||
Find a formula for the function \(f(x)\) such that | |||
\( \displaystyle f'(x)= $fpx \) and \( f(2)=5 \). | |||
$BR | $BR | ||
$BR | $BR | ||
$integral | |||
END_TEXT | END_TEXT | ||
Context()->normalStrings; | Context()->normalStrings; | ||
Line 138: | Line 137: | ||
$showPartialCorrectAnswers = 1; | $showPartialCorrectAnswers = 1; | ||
ANS( $ | ANS( Compute("5")->cmp() ); | ||
ANS( Compute("x")->cmp() ); | |||
ANS( Compute("2")->cmp() ); | |||
ANS( Compute("$fpt * dt")->cmp() | |||
->withPostFilter(AnswerHints( | |||
Formula("$fpx") => "Are you using the correct variable?", | |||
Formula("$fpx*dx") => "Are you using the correct variable?", | |||
Formula("$fpt") => "Don't forget the differential dt", | |||
)) | |||
); | |||
</pre> | </pre> | ||
<td style="background-color:#eeccff;padding:7px;"> | <td style="background-color:#eeccff;padding:7px;"> | ||
Line 159: | Line 167: | ||
Context()->normalStrings; | Context()->normalStrings; | ||
COMMENT('MathObject version | |||
COMMENT('MathObject version'); | |||
ENDDOCUMENT(); | ENDDOCUMENT(); |
Revision as of 21:28, 3 December 2010
Answer Blanks in the Limits of Integration

This PG code shows how to put answer blanks into the limits of integration.
- Download file: File:LimitsOfIntegration1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/IntegralCalc/LimitsOfIntegration1.pg
PG problem file | Explanation |
---|---|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "PGunion.pl", "answerHints.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric"); Context()->variables->are( x=>"Real", dx=>"Real", t=>"Real", dt=>"Real" ); $fpx = Formula("sin(x)"); $fpt = Formula("sin(t)"); # # Display the answer blanks properly in different modes # Context()->texStrings; if ($displayMode eq 'TeX') { $integral = '\(\displaystyle f(x) = '. ans_rule(4). '+ \int_{t = '. ans_rule(4). '}^{t = '. ans_rule(4). '}'. ans_rule(20). '\)'; } else { $integral = BeginTable(center=>0). Row([ '\(f(x)=\)'.$SPACE.ans_rule(4).$SPACE.'\(+\displaystyle\int\)', '\( t = \)'.ans_rule(4).$BR.$BR.'\( t = \)'.ans_rule(4), ans_rule(20)],separation=>2). EndTable(); } Context()->normalStrings; |
Setup: |
Context()->texStrings; BEGIN_TEXT Find a formula for the function \(f(x)\) such that \( \displaystyle f'(x)= $fpx \) and \( f(2)=5 \). $BR $BR $integral END_TEXT Context()->normalStrings; |
Main Text: |
$showPartialCorrectAnswers = 1; ANS( Compute("5")->cmp() ); ANS( Compute("x")->cmp() ); ANS( Compute("2")->cmp() ); ANS( Compute("$fpt * dt")->cmp() ->withPostFilter(AnswerHints( Formula("$fpx") => "Are you using the correct variable?", Formula("$fpx*dx") => "Are you using the correct variable?", Formula("$fpt") => "Don't forget the differential dt", )) ); |
Answer Evaluation: |
Context()->texStrings; BEGIN_SOLUTION ${PAR}SOLUTION:${PAR} Solution explanation goes here. END_SOLUTION Context()->normalStrings; COMMENT('MathObject version'); ENDDOCUMENT(); |
Solution: |