Sage in WeBWorK: Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
Sage is an open source, online symbolic mathematical system.  Details on Sage can be found at http://www.sagemath.org .  | |||
For use within WebWork, a special "single-cell" version of Sage is located at   | |||
##  First Homework Problem File for  | |||
##  Calculus  | |||
##  Partial Derivatives  | |||
##  Unit 1  | |||
##   | |||
DOCUMENT();  | |||
loadMacros(  | |||
"PGstandard.pl",  | |||
"PGchoicemacros.pl",  | |||
"MathObjects.pl",  | |||
);  | |||
Context()->strings->add(none=>{});  | |||
TEXT(beginproblem());  | |||
$x0 = non_zero_random(-2,2,1);    | |||
$y0 = non_zero_random(-2,2,1);    | |||
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);  | |||
TEXT(<<EOF);  | |||
<div id="singlecell-test"><script type="text/code">  | |||
#########  Sage code pasted starting here ##########  | |||
var('x,y,t,s')  | |||
#   | |||
M=x*y  | |||
N=-y  | |||
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']],  | |||
bottom=[['xx'],['yy']]))  | |||
def _(  x0 = input_box(0,width=5,label='$x_0$'),  | |||
        y0 = input_box(0,width=5,label='$y_0$'),  | |||
        delx = input_box(1,width=5,label='$\Delta{x}$'),  | |||
        dely = input_box(1,width=5,label='$\Delta{y}$'),  | |||
        xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),  | |||
        yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):  | |||
    G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)  | |||
    G += arrow((x0,y0),(x0+delx,y0+dely))  | |||
    show(G)  | |||
##############  End of Sage Code ######################  | |||
</script></div>  | |||
   <script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script>  | |||
   <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>  | |||
   <script type="text/javascript">  | |||
$(function() { // load only when the page is loaded  | |||
  var makecells = function() {  | |||
  singlecell.makeSinglecell({  | |||
      inputLocation: "#singlecell-test",  | |||
      editor: "codemirror",  | |||
      hide: ["editor","computationID","files","messages","sageMode"],  | |||
      evalButtonText: "Start/Restart",  | |||
      replaceOutput: true});  | |||
  }  | |||
  singlecell.init(makecells); // load Single Cell libraries and then  | |||
                              // initialize Single Cell instances  | |||
  });  | |||
  </script>  | |||
EOF  | |||
############### Below is the normal WebWork pg stuff #####################  | |||
Context()->texStrings;  | |||
BEGIN_TEXT  | |||
Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \).  | |||
$BR $BR  | |||
\( f($x0,$y0) = \)\{ ans_rule(15) \}   | |||
$PAR  | |||
END_TEXT  | |||
Context()->normalStrings;  | |||
#  need to add reasonable approximation error of about 0.1 or so.  | |||
ANS( Compute($f0)->cmp() );  | |||
ENDDOCUMENT();        # This should be the last executable line in the problem.  | |||
Revision as of 21:26, 30 December 2011
Sage is an open source, online symbolic mathematical system. Details on Sage can be found at http://www.sagemath.org .
For use within WebWork, a special "single-cell" version of Sage is located at
- First Homework Problem File for
 - Calculus
 - Partial Derivatives
 - Unit 1
 
DOCUMENT();
loadMacros( "PGstandard.pl", "PGchoicemacros.pl", "MathObjects.pl", );
Context()->strings->add(none=>{});
TEXT(beginproblem());
$x0 = non_zero_random(-2,2,1); $y0 = non_zero_random(-2,2,1);
$f0 = ($x0**3-$y0**3)/($x0**2+$y0**2+1);
TEXT(<<EOF);
- Sage code pasted starting here ##########
 
var('x,y,t,s')
M=x*y N=-y
@interact(layout=dict(left= [['x0'],['y0'],['delx'],['dely']], bottom=[['xx'],['yy']])) def _( x0 = input_box(0,width=5,label='$x_0$'),
       y0 = input_box(0,width=5,label='$y_0$'),
       delx = input_box(1,width=5,label='$\Delta{x}$'),
       dely = input_box(1,width=5,label='$\Delta{y}$'),
       xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
       yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
           
   G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]),aspect_ratio=true)
   G += arrow((x0,y0),(x0+delx,y0+dely))
   show(G)
- End of Sage Code ######################
 
<script type="text/javascript" src="http://sagemath.org:5467/static/jquery-1.5.min.js"></script> <script type="text/javascript" src="http://sagemath.org:5467/embedded_singlecell.js"></script>
<script type="text/javascript">
$(function() { // load only when the page is loaded
 var makecells = function() {
 singlecell.makeSinglecell({
     inputLocation: "#singlecell-test",
     editor: "codemirror",
     hide: ["editor","computationID","files","messages","sageMode"],
     evalButtonText: "Start/Restart",
     replaceOutput: true});
 }
 singlecell.init(makecells); // load Single Cell libraries and then
                             // initialize Single Cell instances
}); </script>
EOF
- Below is the normal WebWork pg stuff #####################
 
Context()->texStrings; BEGIN_TEXT Using the contour plot below, determine the range value of the illustrated function at \( ($x0,$y0) \). $BR $BR \( f($x0,$y0) = \)\{ ans_rule(15) \} $PAR END_TEXT Context()->normalStrings;
- need to add reasonable approximation error of about 0.1 or so.
 
ANS( Compute($f0)->cmp() );
ENDDOCUMENT(); # This should be the last executable line in the problem.
To pass perl variables to the sage block if you need to from the problem initialization use:
- TEXT(<<EOF);
 
where <<EOF allows interpolation
otherwise use:
- TEXT(<<'EOF');
 
where 'EOF' tells perl not to interpolate variables
15:17aubreyja_yes