HowToEnterMathSymbols: Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
We use the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension] by [http://www.mediawiki.org/wiki/User:Dirk_Nuyens Dirk Nuyens]. This extension enables [http://www.mathjax.org/ MathJax] (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.  | |||
== Usage ==  | |||
The following math environments are defined for inline style math:  | The following math environments are defined for inline style math:  | ||
* <code><nowiki>$...$</nowiki></code> (can be turned off, even per page),  | * <code><nowiki>$...$</nowiki></code> (can be turned off, even per page),  | ||
| Line 10: | Line 13: | ||
* <code>:<math>...</math></code>.  | * <code>:<math>...</math></code>.  | ||
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.  | MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.  | ||
This extension allows for typical LaTeX math integration.  | |||
For example:  | |||
<syntaxhighlight lang="latex">  | |||
<!-- some LaTeX macros we want to use: -->  | |||
$  | |||
  \newcommand{\Re}{\mathrm{Re}\,}  | |||
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}  | |||
$  | |||
We consider, for various values of $s$, the $n$-dimensional integral  | |||
\begin{align}  | |||
  \label{def:Wns}  | |||
  W_n (s)  | |||
  &:=  | |||
  \int_{[0, 1]^n}  | |||
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}  | |||
\end{align}  | |||
which occurs in the theory of uniform random walk integrals in the plane,  | |||
where at each step a unit-step is taken in a random direction.  As such,  | |||
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance  | |||
to the origin after $n$ steps.  | |||
By experimentation and some sketchy arguments we quickly conjectured and  | |||
strongly believed that, for $k$ a nonnegative integer  | |||
\begin{align}  | |||
  \label{eq:W3k}  | |||
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.  | |||
\end{align}  | |||
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.  | |||
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained  | |||
at the end of the paper.  | |||
</syntaxhighlight>  | |||
(Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'')  | |||
This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.  | |||
This documentation comes from the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension page]. Additional documentation on using MathJax can be found at www.mathjax.org.  | |||
Revision as of 14:52, 24 July 2012
We use the MathJax Extension by Dirk Nuyens. This extension enables MathJax (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
Usage
The following math environments are defined for inline style math:
$...$(can be turned off, even per page),\(...\)and<math>...</math>.
And the following math environments are defined for display style math:
$$...$$(can be turned off, even per page),\[...\],\begin{...}...\end{...}and:<math>...</math>.
MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of \label{} and \eqref{} tags with automatic formula numbering. If needed you can still hand label by using \tag{}.
This extension allows for typical LaTeX math integration. For example: <syntaxhighlight lang="latex"> $
 \newcommand{\Re}{\mathrm{Re}\,}
 \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align}
 \label{def:Wns}
 W_n (s)
 &:=
 \int_{[0, 1]^n}
   \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}
 \label{eq:W3k}
 W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper. </syntaxhighlight> (Which comes from a preprint of Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.)
This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.
This documentation comes from the MathJax Extension page. Additional documentation on using MathJax can be found at www.mathjax.org.