|
|
Line 1: |
Line 1: |
| We use the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension] by [http://www.mediawiki.org/wiki/User:Dirk_Nuyens Dirk Nuyens]. This extension enables [http://www.mathjax.org/ MathJax] (http://www.mathjax.org/) which is a Javascript library written by Davide Cervone.
| | #REDIRECT[[Entering mathematics]] |
| | |
| == Usage ==
| |
| | |
| The following math environments are defined for inline style math:
| |
| * <code>\(...\)</code> and
| |
| * <code><math>...</math></code>.
| |
| And the following math environments are defined for display style math:
| |
| * <code><nowiki>$$...$$</nowiki></code> (can be turned off, even per page),
| |
| * <code>\[...\]</code>,
| |
| * <code>\begin{...}...\end{...}</code> and
| |
| * <code>:<math>...</math></code>.
| |
| MathJax produces nice and scalable mathematics, see their website (http://www.mathjax.org/) for a demonstration. This extension also enables the usage of <code>\label{}</code> and <code>\eqref{}</code> tags with automatic formula numbering. If needed you can still hand label by using <code>\tag{}</code>.
| |
| | |
| == Example ==
| |
| | |
| === Latex code ===
| |
| | |
| <syntaxhighlight lang="latex">
| |
| <!-- some LaTeX macros we want to use: -->
| |
| \(
| |
| \newcommand{\Re}{\mathrm{Re}\,}
| |
| \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
| |
| \)
| |
| | |
| We consider, for various values of \(s\), the \(n\)-dimensional integral
| |
| \begin{align}
| |
| \label{def:Wns}
| |
| W_n (s)
| |
| &:=
| |
| \int_{[0, 1]^n}
| |
| \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
| |
| \end{align}
| |
| which occurs in the theory of uniform random walk integrals in the plane,
| |
| where at each step a unit-step is taken in a random direction. As such,
| |
| the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance
| |
| to the origin after \(n\) steps.
| |
| | |
| By experimentation and some sketchy arguments we quickly conjectured and
| |
| strongly believed that, for \(k\) a nonnegative integer
| |
| \begin{align}
| |
| \label{eq:W3k}
| |
| W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
| |
| \end{align}
| |
| Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
| |
| The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
| |
| at the end of the paper.
| |
| </syntaxhighlight>
| |
| | |
| (Which comes from a preprint of ''Jon M. Borwein, et. al. Some arithmetic properties of short random walk integrals.'')
| |
| | |
| === Rendered text ===
| |
| | |
| <!-- This renders as http://www.cs.kuleuven.be/~dirkn/Extension_MathJax/MathJaxExample.png.-->
| |
| | |
| <!-- some LaTeX macros we want to use: -->
| |
| \(
| |
| \newcommand{\Re}{\mathrm{Re}\,}
| |
| \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
| |
| \)
| |
|
| |
| We consider, for various values of \(s\), the \(n\)-dimensional integral
| |
| \begin{align}
| |
| \label{def:Wns}
| |
| W_n (s)
| |
| &:=
| |
| \int_{[0, 1]^n}
| |
| \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
| |
| \end{align}
| |
| which occurs in the theory of uniform random walk integrals in the plane,
| |
| where at each step a unit-step is taken in a random direction. As such,
| |
| the integral \eqref{def:Wns} expresses the \(s\)-th moment of the distance
| |
| to the origin after \(n\) steps.
| |
|
| |
| By experimentation and some sketchy arguments we quickly conjectured and
| |
| strongly believed that, for \(k\) a nonnegative integer
| |
| \begin{align}
| |
| \label{eq:W3k}
| |
| W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
| |
| \end{align}
| |
| Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
| |
| The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
| |
| at the end of the paper.
| |
| | |
| == Additional Information ==
| |
| | |
| * This documentation comes from the [http://www.mediawiki.org/wiki/Extension:MathJax MathJax Extension page]. Additional documentation on using MathJax can be found at [http://www.mathjax.org www.mathjax.org].
| |
| * Our MathJax config file defines some potentially helpful macros:
| |
| | |
| | |
| <syntaxhighlight lang="javascript">
| |
| //<![CDATA[
| |
| MathJax.Hub.Config({
| |
| tex2jax: {
| |
| inlineMath: [ ["\\(","\\)"] ],
| |
| displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
| |
| processEscapes: false,
| |
| element: "content",
| |
| ignoreClass: "(tex2jax_ignore|mw-search-results|searchresults)" /* note: this is part of a regex, check the docs! */
| |
| },
| |
| TeX: {
| |
| Macros: {
| |
| /* Wikipedia compatibility: these macros are used on Wikipedia */
| |
| empty: '\\emptyset',
| |
| P: '\\unicode{xb6}',
| |
| Alpha: '\\unicode{x391}', /* FIXME: These capital Greeks don't show up in bold in \boldsymbol ... */
| |
| Beta: '\\unicode{x392}',
| |
| Epsilon: '\\unicode{x395}',
| |
| Zeta: '\\unicode{x396}',
| |
| Eta: '\\unicode{x397}',
| |
| Iota: '\\unicode{x399}',
| |
| Kappa: '\\unicode{x39a}',
| |
| Mu: '\\unicode{x39c}',
| |
| Nu: '\\unicode{x39d}',
| |
| Pi: '\\unicode{x3a0}',
| |
| Rho: '\\unicode{x3a1}',
| |
| Sigma: '\\unicode{x3a3}',
| |
| Tau: '\\unicode{x3a4}',
| |
| Chi: '\\unicode{x3a7}',
| |
| C: '\\mathbb{C}', /* the complex numbers */
| |
| N: '\\mathbb{N}', /* the natural numbers */
| |
| Q: '\\mathbb{Q}', /* the rational numbers */
| |
| R: '\\mathbb{R}', /* the real numbers */
| |
| Z: '\\mathbb{Z}', /* the integer numbers */
| |
| RR: '\\mathbb{R}',
| |
| ZZ: '\\mathbb{Z}',
| |
| NN: '\\mathbb{N}',
| |
| QQ: '\\mathbb{Q}',
| |
| CC: '\\mathbb{C}',
| |
| FF: '\\mathbb{F}'
| |
| }
| |
| }
| |
| });
| |
| //]]>
| |
| </syntaxhighlight>
| |