FactoringAndExpanding: Difference between revisions
(New page: <h2>Your title here: PG Code Snippet</h2> <!-- Header for these sections -- no modification needed --> <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> <em>Thi...) |
No edit summary |
||
Line 1: | Line 1: | ||
<h2> | <h2>Factored Answers</h2> | ||
<!-- Header for these sections -- no modification needed --> | <!-- Header for these sections -- no modification needed --> | ||
<p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | <p style="background-color:#eeeeee;border:black solid 1px;padding:3px;"> | ||
<em>This | <em>This is the PG code to check answers that require students to factor an expression into two pieces that may have a constant factor that could be moved from one piece to another.</em> | ||
</p> | </p> | ||
Line 23: | Line 23: | ||
<td style="background-color:#ddffdd;border:black 1px dashed;"> | <td style="background-color:#ddffdd;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
loadMacros(" | DOCUMENT(); | ||
loadMacros( | |||
"PGstandard.pl", | |||
"MathObjects.pl", | |||
"parserMultiAnswer.pl", | |||
); | |||
TEXT(beginproblem()); | |||
</pre> | </pre> | ||
</td> | </td> | ||
Line 29: | Line 37: | ||
<p> | <p> | ||
<b>Initialization:</b> | <b>Initialization:</b> | ||
We need to include the <code>parserMultiAnswer.pl</code> answer checker so we can take student answers from multiple answer blanks and check them as a whole. | |||
</p> | </p> | ||
</td> | </td> | ||
Line 41: | Line 47: | ||
<td style="background-color:#ffffdd;border:black 1px dashed;"> | <td style="background-color:#ffffdd;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
Context(" | Context("Numeric"); | ||
$fac1 = Compute("(2 x + 3)"); | |||
$fac2 = Compute("(8 x + 12)"); | |||
$multians = MultiAnswer($fac1,$fac2)->with( | |||
singleResult => 0, | |||
allowBlankAnswers => 1, | |||
# singleResult => 1, | |||
# separator => " * ", | |||
# tex_separator => " \cdot ", | |||
checker => sub { | |||
my $correct = shift; my $student = shift; my $self = shift; | |||
my ($F,$G) = @{$correct}; | |||
my ($f,$g) = @{$student}; | |||
Value::Error('Neither factor can be constant') | |||
unless $f->isFormula && $g->isFormula; | |||
Value::Error('Your product does not equal the original (it is incomplete)') | |||
unless $F*$G == $f*$g; | |||
# return 0 unless $F*$G == $f*$g; | |||
# use an adaptive parameter 'a' | |||
my $context = Context()->copy; | |||
$context->flags->set(no_parameters=>0); | |||
$context->variables->add('a'=>'Parameter'); | |||
my $a = Formula($context,'a'); | |||
$f = Formula($context,$f); | |||
my $result = ($a*$F == $f || $a*$G == $f); | |||
Value::Error('Factor as the product of two linear functions') | |||
unless ($result == 1); | |||
return $result; | |||
} | |||
); | |||
</pre> | </pre> | ||
</td> | </td> | ||
Line 50: | Line 92: | ||
<p> | <p> | ||
<b>Setup:</b> | <b>Setup:</b> | ||
This is a standard factoring problem for a non-monic polynomial (where the leading coefficient is not 1 or -1). The <code>MultiAnswer</code> answer checker allows us to collect student answers from several answer blanks and perform answer evaluation on several answer blanks simultaneously. Since it is possible to factor <code>16 x^2 + 48 x + 36</code> as <code>(2x + 3) (8x + 12)</code> or <code>(4x + 6) (4x + 6)</code>, we need to use an adaptive parameter to allow both of these answers to be marked correct. | |||
</p> | </p> | ||
<p> | <p> | ||
The <code>MultiAnswer</code> makes sure that neither factor is constant and that the product of the student's factors equals the product of the correct factors. Then, it creates a copy of the current context as a local context, and creates an adaptive parameter in this local context. The adaptive parameter will allow us to determine whether each factor in the student's answer is equal to a constant multiple of some factor of the correct answer. | |||
</p> | </p> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 64: | Line 105: | ||
<td style="background-color:#ffdddd;border:black 1px dashed;"> | <td style="background-color:#ffdddd;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
Context()->texStrings; | |||
BEGIN_TEXT | BEGIN_TEXT | ||
. | Factor the following expression. | ||
$BR | |||
$BR | |||
\( 16 t^2 + 48 t + 36 = \big( \) | |||
\{$multians->ans_rule(10)\} | |||
\( \big) \big( \) | |||
\{$multians->ans_rule(10)\} | |||
\( \big) \) | |||
\{ AnswerFormatHelp("formulas") \} | |||
END_TEXT | END_TEXT | ||
Context()->normalStrings; | |||
</pre> | </pre> | ||
<td style="background-color:#ffcccc;padding:7px;"> | <td style="background-color:#ffcccc;padding:7px;"> | ||
<p> | <p> | ||
<b>Main Text:</b> | <b>Main Text:</b> | ||
Each answer blank must be a method of the <code>$multians</code> object, which is why we use <code>$multians->ans_rule(10)</code>. The big parentheses will help students understand what the format of the answer should be. | |||
</p> | </p> | ||
</td> | </td> | ||
Line 81: | Line 132: | ||
<td style="background-color:#eeddff;border:black 1px dashed;"> | <td style="background-color:#eeddff;border:black 1px dashed;"> | ||
<pre> | <pre> | ||
ANS( $ | $showPartialCorrectAnswers = 1; | ||
ANS( $multians->cmp() ); | |||
ENDDOCUMENT(); | |||
</pre> | </pre> | ||
<td style="background-color:#eeccff;padding:7px;"> | <td style="background-color:#eeccff;padding:7px;"> | ||
<p> | <p> | ||
<b>Answer Evaluation:</b> | <b>Answer Evaluation:</b> | ||
Everything is as expected. | |||
</p> | </p> | ||
</td> | </td> | ||
Line 97: | Line 152: | ||
[[Category:Problem Techniques]] | [[Category:Problem Techniques]] | ||
<ul> | |||
<li>POD documentation: [http://webwork.maa.org/doc/cvs/pg_CURRENT/macros/parserMultiAnswer.pl.html parserMultiAnswer.pl.html]</li> | |||
<li>PG macro: [http://cvs.webwork.rochester.edu/viewcvs.cgi/pg/macros/parserMultiAnswer.pl parserMultiAnswer.pl]</li> | |||
</ul> |
Revision as of 02:59, 11 April 2010
Factored Answers
This is the PG code to check answers that require students to factor an expression into two pieces that may have a constant factor that could be moved from one piece to another.
PG problem file | Explanation |
---|---|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "parserMultiAnswer.pl", ); TEXT(beginproblem()); |
Initialization:
We need to include the |
Context("Numeric"); $fac1 = Compute("(2 x + 3)"); $fac2 = Compute("(8 x + 12)"); $multians = MultiAnswer($fac1,$fac2)->with( singleResult => 0, allowBlankAnswers => 1, # singleResult => 1, # separator => " * ", # tex_separator => " \cdot ", checker => sub { my $correct = shift; my $student = shift; my $self = shift; my ($F,$G) = @{$correct}; my ($f,$g) = @{$student}; Value::Error('Neither factor can be constant') unless $f->isFormula && $g->isFormula; Value::Error('Your product does not equal the original (it is incomplete)') unless $F*$G == $f*$g; # return 0 unless $F*$G == $f*$g; # use an adaptive parameter 'a' my $context = Context()->copy; $context->flags->set(no_parameters=>0); $context->variables->add('a'=>'Parameter'); my $a = Formula($context,'a'); $f = Formula($context,$f); my $result = ($a*$F == $f || $a*$G == $f); Value::Error('Factor as the product of two linear functions') unless ($result == 1); return $result; } ); |
Setup:
This is a standard factoring problem for a non-monic polynomial (where the leading coefficient is not 1 or -1). The
The |
Context()->texStrings; BEGIN_TEXT Factor the following expression. $BR $BR \( 16 t^2 + 48 t + 36 = \big( \) \{$multians->ans_rule(10)\} \( \big) \big( \) \{$multians->ans_rule(10)\} \( \big) \) \{ AnswerFormatHelp("formulas") \} END_TEXT Context()->normalStrings; |
Main Text:
Each answer blank must be a method of the |
$showPartialCorrectAnswers = 1; ANS( $multians->cmp() ); ENDDOCUMENT(); |
Answer Evaluation: Everything is as expected. |
- POD documentation: parserMultiAnswer.pl.html
- PG macro: parserMultiAnswer.pl