IndefiniteIntegrals1
Indefinite Integrals and General Antiderivatives

This PG code shows how to check answers that are indefinite integrals or general antiderivatives.
- File location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1.pg
- PGML location in OPL: FortLewis/Authoring/Templates/IntegralCalc/IndefiniteIntegrals1_PGML.pg
| PG problem file | Explanation |
|---|---|
|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "AnswerFormatHelp.pl", "parserFormulaUpToConstant.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric");
$specific = Formula("e^x");
$general = FormulaUpToConstant("e^x");
|
Setup: Examples of specific and general antiderivatives:
The specific antiderivative is an ordinary formula, and we check this answer, we will specify that it be a formula evaluated up to a constant (see the Answer Evaluation section below). For the general antiderivative, we use the |
Context()->texStrings;
BEGIN_TEXT
Enter a specific antiderivative for \( e^x \):
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
$BR
$BR
Enter the most general antiderivative for \( e^x \):
\{ ans_rule(20) \}
\{ AnswerFormatHelp("formulas") \}
END_TEXT
Context()->normalStrings;
|
Main Text: |
$showPartialCorrectAnswers = 1; ANS( $specific->cmp(upToConstant=>1) ); ANS( $general->cmp() ); |
Answer Evaluation:
For the specific antiderivative, we must use |
Context()->texStrings;
BEGIN_SOLUTION
Solution explanation goes here.
END_SOLUTION
Context()->normalStrings;
COMMENT('MathObject version.');
ENDDOCUMENT();
|
Solution: |