LimitsOfIntegration1
Answer Blanks in the Limits of Integration

This PG code shows how to put answer blanks into the limits of integration.
- Download file: File:LimitsOfIntegration1.txt (change the file extension from txt to pg when you save it)
- File location in NPL:
FortLewis/Authoring/Templates/IntegralCalc/LimitsOfIntegration1.pg
| PG problem file | Explanation |
|---|---|
|
Problem tagging: |
|
DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", "PGunion.pl", "answerHints.pl", ); TEXT(beginproblem()); |
Initialization: |
Context("Numeric");
Context()->variables->are(
x=>"Real", dx=>"Real",
t=>"Real", dt=>"Real"
);
$fpx = Formula("sin(x)");
$fpt = Formula("sin(t)");
#
# Display the answer blanks properly in different modes
#
Context()->texStrings;
if ($displayMode eq 'TeX') {
$integral =
'\(\displaystyle f(x) = '.
ans_rule(4).
'+ \int_{t = '.
ans_rule(4).
'}^{t = '.
ans_rule(4).
'}'.
ans_rule(20).
'\)';
} else {
$integral =
BeginTable(center=>0).
Row([
'\(f(x)=\)'.$SPACE.ans_rule(4).$SPACE.'\(+\displaystyle\int\)',
'\( t = \)'.ans_rule(4).$BR.$BR.'\( t = \)'.ans_rule(4),
ans_rule(20)],separation=>2).
EndTable();
}
Context()->normalStrings;
|
Setup: |
Context()->texStrings; BEGIN_TEXT Find a formula for the function \(f(x)\) such that \( \displaystyle f'(x)= $fpx \) and \( f(2)=5 \). $BR $BR $integral END_TEXT Context()->normalStrings; |
Main Text: |
$showPartialCorrectAnswers = 1;
ANS( Compute("5")->cmp() );
ANS( Compute("x")->cmp() );
ANS( Compute("2")->cmp() );
ANS( Compute("$fpt * dt")->cmp()
->withPostFilter(AnswerHints(
Formula("$fpx") => "Are you using the correct variable?",
Formula("$fpx*dx") => "Are you using the correct variable?",
Formula("$fpt") => "Don't forget the differential dt",
))
);
|
Answer Evaluation: |
Context()->texStrings;
BEGIN_SOLUTION
${PAR}SOLUTION:${PAR}
Solution explanation goes here.
END_SOLUTION
Context()->normalStrings;
COMMENT('MathObject version');
ENDDOCUMENT();
|
Solution: |